Solutions liste 3

Voici des solutions aux exercices de la liste 3. Elles ne sont évidemment pas uniques, surtout pour les contre-exemples donnés.

Exercice 3.1.

- (i) Soit Ω un ouvert de \mathbb{R} . Montrer que si Ω est borné alors $\mathcal{L}(\Omega) < +\infty$. La réciproque est-elle vraie?
- (ii) Soit B un borélien de \mathbb{R} . Montrer que si B contient un ouvert non vide, alors $\mathcal{L}(B) > 0$. La réciproque est-elle vraie?

Solution:

(i) Si Ω est borné, alors il existe R > 0 tel que $\Omega \subset [-R, R]$ et donc $\mathcal{L}(\Omega) \le 2R < +\infty$. La réciproque n'est pas nécessairement vraie : il suffit de prendre par exemple

$$\Omega = \bigcup_{k \in \mathbb{N}^*}]k - \frac{1}{2^{k+1}}, k + \frac{1}{2^{k+1}}[,$$

qui est ouvert non borné de mesure de Lebesgue 1.

(ii) Si *B* contient un ouvert non vide, il contient un intervalle du type]a,b[, a < b et donc sa mesure de Lebesgue est plus grande que b − a > 0.
La réciproque n'est pas nécessairement vraie : il suffit de prendre par exemple B = [0,1]\Q qui est de mesure de Lebesgue 1 et qui ne contient aucun ouvert non vide par densité de Q dans ℝ.

Exercice 3.2. Soit *B* un borélien de \mathbb{R} tel que $\mathcal{L}(B) > 1$. Montrer que

- (i) $\mathcal{L}(B) = \sum_{m \in \mathbb{Z}} \mathcal{L}((B-m) \cap [0,1[);$
- (ii) les ensembles $(B-m) \cap [0,1[$ ne peuvent être deux à deux disjoints;
- (iii) il existe $b_1, b_2 \in B$ tels que $b_1 b_2 \in \mathbb{Z} \setminus \{0\}$.

Solution:

(i) Par invariance par translation de \mathcal{L} et vu que $\{B \cap [m, m+1]\}_{m \in \mathbb{Z}}$ forme une partition de B, on a directement

$$\sum_{m\in\mathbb{Z}}\mathcal{L}((B-m)\cap[0,1[)=\sum_{m\in\mathbb{Z}}\mathcal{L}(B\cap[m,m+1[)=\mathcal{L}(B).$$

(ii) Par l'absurde, si c'était le cas, en notant C leur union, on aurait

$$1 < \mathcal{L}(B) = \sum_{m \in \mathbb{Z}} \mathcal{L}((B-m) \cap [0,1[) = \mathcal{L}(C) \le 1,$$

une absurdité.

(iii) Vu le point (ii), il existe $m_1, m_2 \in \mathbb{Z}$ distincts tels que

$$(B - m_1) \cap [0, 1] \cap (B - m_2) \cap [0, 1] \neq \emptyset.$$

Soit donc $x \in (B - m_1) \cap (B - m_2) \cap [0, 1[$, il existe alors $b_1, b_2 \in B$ tels que

$$x = b_1 - m_1 = b_2 - m_2$$
.

Ainsi,
$$b_1 - b_2 = m_1 - m_2 \in \mathbb{Z} \setminus \{0\}$$
.

Exercice 3.3. Démontrer que tout ensemble \mathcal{L} -négligeable de \mathbb{R}^d est d'intérieur vide. En déduire que tout ensemble de complémentaire négligeable est dense.

Solution : Il suffit de procéder par l'absurde car une boule ouverte n'est pas de mesure de Lebesgue nulle. Si maintenant D est un ensemble tel que D^c est négligeable, alors

$$(D^c)^\circ = \emptyset \Leftrightarrow (\overline{D})^c = \emptyset \Leftrightarrow \overline{D} = \mathbb{R}.$$

Exercice 3.4. Donner deux fonctions Borel-mesurables f, $g: \mathbb{R} \to \mathbb{R}$ qui soient égales sur un sous-ensemble dense de \mathbb{R} mais qui diffèrent \mathcal{L} -presque partout sur \mathbb{R} .

Solution : Les fonctions 1 et $\chi_{\mathbb{O}}$.

Exercice 3.5. Démontrer que les trois assertions suivantes sont équivalentes :

- (i) *E* est un ensemble Lebesgue-mesurable.
- (ii) $E = G \setminus N_1$ où G est un ensemble G_δ et N_1 est un ensemble négligeable.
- (iii) $E = F \cup N_2$ où F est un ensemble F_{σ} et N_2 est un ensemble négligeable.

Solution : Il est clair que les assertions 2 et 3 impliquent la première, la mesure de Lebesgue étant complète et les ensembles G_{δ} et F_{σ} étant des boréliens. Montrons que la première assertion implique les deux autres.

Si $\mathcal{L}(E) < \infty$, pour tout $j \in N_0$, par régularité de la mesure de Lebesgue, on trouve K_i compact inclus dans E et Ω_i ouvert contenant E tels que

$$\mathcal{L}(E \setminus K_j) < 2^{-j}$$
 et $\mathcal{L}(\Omega_j \setminus E) < 2^{-j}$.

L'ensemble $G = \bigcap_j \Omega_j$ est G_δ tandis que l'ensemble $F = \bigcup_j K_j$ est F_σ . De plus, pour tout $j \in \mathbb{N}^*$

$$\mathcal{L}(E \setminus F) \le \mathcal{L}(E \setminus K_i) < 2^{-j}$$
 et $\mathcal{L}(G \setminus E) \le \mathcal{L}(\Omega_i \setminus E) < 2^{-j}$

ce qui implique bien que $N_2 = E \setminus K$ et $N_1 = \Omega \setminus E$ sont des ensembles négligeables.

Si maintenant $\mathcal{L}(E) = \infty$, on peut écrire $E = \bigcup_{k \in \mathbb{N}^*} E_k$ où $\mathcal{L}(E_k) < \infty$. Pour tout $j,k \in \mathbb{N}^*$ on peut trouver $K_{j,k}$ compact inclus dans E_k et $\Omega_{j,k}$ ouvert contenant E tels que

$$\mathcal{L}(E_k \setminus K_{j,k}) < 2^{-(j+k)}$$
 et $\mathcal{L}(\Omega_{j,k} \setminus E_k) < 2^{-(j+k)}$.

Dès lors les ensembles

$$G = \bigcap_{k \in \mathbb{N}^*} \bigcup_{j \in \mathbb{N}^*} \Omega_{j,k}$$
 et $F = \bigcup_{k \in \mathbb{N}^*} \bigcup_{j \in \mathbb{N}^*} K_{j,k}$

^{1.} En prenant par exemple $E_k = E \cap B(0, k)$

sont respectivement des ensembles G_{δ} et F_{σ} et pour tout $k \in \mathbb{N}^*$

$$\mathcal{L}(G \setminus E) \le \mathcal{L}(\bigcup_{j \in \mathbb{N}^*} \Omega_{j,k} \setminus E_k)$$

$$\le \sum_{j \in \mathbb{N}^*} \mathcal{L}(\Omega_{j,k} \setminus E_k)$$

$$< 2^{-k}$$

et pour tout $j \in \mathbb{N}^*$

$$\mathcal{L}(E \setminus F) \leq \sum_{k \in \mathbb{N}} \mathcal{L}(E_k \setminus \bigcup_{j \in \mathbb{N}^*} K_{j,k})$$

$$\leq \sum_{k \in \mathbb{N}} \mathcal{L}(E_k \setminus K_{j,k})$$

$$\leq 2^{-j}$$

Exercice 3.6. Soit $(x_j)_{j\in\mathbb{N}^*}$ une suite de nombres réels. On définit une mesure μ sur (\mathbb{R},\mathbb{B}) par $\mu=\sum_{j=1}^{+\infty}\delta_{x_j}$. Montrer que deux fonctions f, $g:\mathbb{R}\to\mathbb{R}$ sont égales μ -presque partout si et seulement si $f(x_i)=g(x_i)$ pour tout $j\in\mathbb{N}^*$.

Solution:

 \implies Si f et g sont égales μ -presque partout alors il existe un borélien A tel que (A) = 0 et $\{x \in \mathbb{R} : f(x) \neq g(x)\}$ ⊂ A. S'il existe $j \in \mathbb{N}^*$ tel que $f(x_j) \neq g(x_j)$ alors $\mu(A) > 1$, ce qui est absurde.

 \subseteq Si $f(x_j) = g(x_j)$ pour tout $j \in \mathbb{N}^*$, alors $\{x \in \mathbb{R} : f(x) \neq g(x)\} \subset \mathbb{R} \setminus \{x_j : j \in \mathbb{N}\}$ et $\mathbb{R} \setminus \{x_j : j \in \mathbb{N}\}$ est un borélien de mesure nulle donc $\{x \in \mathbb{R} : f(x) \neq g(x)\}$ est bien un ensemble négligeable.

Exercice 3.7.

- (i) Soient (X, \mathcal{A}, μ) et (Y, \mathcal{B}, ν) deux espaces mesurés. Soit $E \subseteq X$ un ensemble μ -négligeable. Pour tout $x \in E$, soit $A_x \subseteq Y$ un ensemble ν -négligeable. Peut-on affirmer que $\bigcup_{x \in E} A_x$ est encore ν -négligeable? Justifier.
- (ii) Soient E et F deux sous-ensembles \mathcal{L} -négligeables de \mathbb{R}^d . Est-ce que la somme $E+F:=\{x+y:x\in E,y\in F\}$ est encore \mathcal{L} -négligeable? Justifier.

Solution:

- (i) Un contre-exemple : soit E l'ensemble de Cantor, on sait qu'il existe une bijection $f: K \to [0,1]$. Pour tout $x \in E$, on pose $A_x = \{f(x)\}$, cet ensemble étant un singleton il est Lebesgue-négligeable. Cependant $\bigcup_{x \in E} A_x = [0,1]$ n'est évidemment pas négligeable.
- (ii) Un contre-exemple : si d=2, les ensembles $E=\{(x,0):x\in\mathbb{R}\}$ et $F=\{(0,y):y\in\mathbb{R}\}$ sont négligeables mais leur somme est \mathbb{R}^2 qui n'est pas négligeable.

Exercice 3.8. Démontrer que la fonction caractéristique de Q n'est continue nulle part mais que la fonction

$$f: [0,1] \to [0,1]: x \mapsto \begin{cases} \frac{1}{q} & \text{si } x = \frac{p}{q} \text{ où } p \text{ et } q \text{ sont premiers entre eux et } q > 0, \\ 0 & \text{si } x = 0 \text{ ou } x \notin \mathbb{Q} \end{cases}$$

est continue \mathcal{L} -presque partout sur [0,1].

<u>Solution</u>: Supposons d'abord que la fonction $\chi_{\mathbb{Q}}$ est continue en un point $x_0 \in \mathbb{R}$, il existe alors $\delta > 0$ tel que, pour tout $x \in B(x_0, \delta)$ on a $|\chi_{\mathbb{Q}}(x) - \chi_{\mathbb{Q}}(x_0)| < \frac{1}{2}$.

- Si $x_0 \in \mathbb{Q}$, cela revient à dire que, pour tout $x \in B(x_0, \delta), |\chi_{\mathbb{Q}}(x) 1| < \frac{1}{2}$, i.e. $B(x_0, \delta) \subset \mathbb{Q}$, ce qui est impossible, l'intérieur de \mathbb{Q} étant vide.
- Si $x_0 \notin \mathbb{Q}$, cela revient à dire que, pour tout $x \in B(x_0, \delta), |\chi_{\mathbb{Q}}(x)| < \frac{1}{2}$, i.e. $B(x_0, \delta) \cap \mathbb{Q} = \emptyset$, ce qui est impossible, par densité de \mathbb{Q} dans \mathbb{R} .

Considérons maintenant la fonction f et supposons d'abord, par l'absurde, avoir un point de continuité en $x_0 = \frac{p}{q} \in \mathbb{Q}$, il existe alors $\delta > 0$ tel que, pour tout $x \in B(x_0, \delta)$ on a $|f(x) - \frac{1}{q}| < \frac{1}{2q}$. Soit alors $x \in B(x_0, \delta) \cap \mathbb{Q}^c$, puisque f(x) = 0, on obtient alors l'inégalité $\frac{1}{q} < \frac{1}{2q}$ qui est absurde.

Montrons maintenant, par l'absurde, que si $x_0 \notin \mathbb{Q}$, alors f est continu en x_0 . En effet, sinon il existerait $\varepsilon > 0$ tel que pour tout $\delta > 0$, il existe $x \in B(x_0, \delta)$ tel que $|f(x)| \ge \varepsilon$. On en déduit que ce x s'écrit forcément $x = \frac{p}{q} \in \mathbb{Q}$ avec $0 < q \le \frac{1}{\varepsilon}$, $p \le q$, p et q premiers entre eux. Or, il existe un nombre fini de tels x, prendre

$$\delta = \frac{1}{2} \min\{|x_0 - \frac{p}{q}| : 0 < q \le \frac{1}{\varepsilon}, p \le q, p, q \text{ premiers entre eux}\}$$

conduit donc à une absurdité.