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From coherent states to frames - 1

Three successive stages (ST.Ali - JPA - J-P.Gazeau, 1991-1993)

(1) Coherent states on locally compact group∫
G

|ηg 〉〈ηg | dν(g) = I ⇔
∫

G

|〈ηg |φ〉|2 dν(g) = ‖φ‖2, ∀φ ∈ H

G = locally compact group, with (left) Haar measure dν(g)
η ∈ H, a fixed vector in the Hilbert space H
ηg = U(g)η, U = strongly continuous, square integrable unitary
representation of G on H

(2) Coherent states on homogeneous space

H= closed subgroup of G , X = G/H, ν= invariant measure on X ,
Borel section σ : G/H → G ,
U = unitary representation of G , square integrable modulo the
subgroup H and the Borel section σ, i.e.Z

X

|ησ(x)〉〈ησ(x)| dν(x) = Sσ, ησ(x) = U(σ(x))η

converges weakly to a bounded, positive, invertible operator Sσ

⇐⇒
Z

X

|〈ησ(x)|φ〉|2 dν(x) = 〈φ,Sσφ〉, ∀φ ∈ H
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From coherent states to frames - 2

(3) Reproducing triples : group structure is not needed !

Reproducing triple {H,Λ,S} :

measure space (X , ν)
bounded, positive, invertible operator S , acting on a Hilbert space H
ν-measurable function Λ from X into the bounded positive operators
on H, s.t. (weakly) Z

X

Λ(x) dν(x) = S

⇒ overcomplete family of (generalized) coherent states

{H,Λ,S} = frame if

rank Λ(x) is constant and finite
S−1 is a bounded operator
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Frames and unbounded frames - 1

Coherent states
X = locally compact space with measure ν
Ψ := {ψx , x ∈ X} ⊂ H a family of vectors indexed by points of X
Ψ is a set of coherent states (CS) ifZ

X

〈f , ψx〉〈ψx , f
′〉 dν(x) = 〈f , Sf ′〉, ∀ f , f ′ ∈ H

where S is a bounded, positive, self-adjoint, invertible operator on H

If S−1 is bounded, usual frame condition : {ψx} ⊂ H is a frame if there
exist constants m > 0 and M <∞ such that

m ‖f ‖2 6
Z

X

|〈ψx , f 〉|2 dν(x) 6 M ‖f ‖2 ,∀ f ∈ H

⇒ 〈f ,Sf 〉 =

Z
X

|〈ψx , f 〉|2 dν(x)

S= frame operator, Sp(S) ⊂ [m,M]

If S−1 is unbounded, with dense domain Dom(S−1), so that we can write

0 <

∫
X

|〈ψx , f 〉|2 dν(x) 6 M ‖f ‖2
,∀ f ∈ H,

then Ψ is called an unbounded frame
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Frames and unbounded frames - 2

Program :

How can one reconstruct the signal?

Formalism known in the continuous case (via the Coherent states
approach), will be particularized to discrete setting

May be formulated in a Gel’fand triplet Φ ⊂ H ⊂ Φ×, in which Φ is
essentially the domain of S−1 with graph norm
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General frames - 1

Properties of frames (S−1 bounded)

Ψ is total in H

Define the CS map WΨ : H → L2(X , dν) by

(WΨf )(x) = 〈ψx , f 〉, f ∈ H

Then W ∗
ΨWΨ = S , since ‖WΨf ‖2

L2(X ) = ‖S1/2f ‖2
H = 〈f ,Sf 〉

Since S > 0, WΨ is injective and W−1
Ψ : Ran(WΨ) :→ H is

well-defined

Ran(WΨ) is a closed subspace HΨ of L2(X , dν), which is complete
for the new scalar product

〈φ, φ′〉Ψ := 〈φ,WΨ S−1 W−1
Ψ φ′〉L2(X ), φ, φ

′ ∈ Ran(WΨ)

and WΨ : H → HΨ is unitary:

〈φ, φ′〉Ψ = 〈WΨf ,WΨf ′〉Ψ = 〈WΨf ,WΨ S−1 W−1
Ψ WΨf ′〉L2(X )

= 〈WΨf ,WΨ S−1 f ′〉L2(X )

= 〈f ,W ∗
ΨWΨ S−1 f ′〉H

= 〈f , f ′〉H
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General frames - 2

The projection from L2(X , dν) onto HΨ is PΨ = WΨWΨ
∗ and it is

an integral operator with kernel K (x , y) = 〈ψx ,S
−1ψy 〉

i.e., HΨ is a reproducing kernel Hilbert space

⇒ The elements of HΨ are genuine functions, not equivalence classes

All this can also be expressed in terms of the evaluation map
E (x) : f 7→ f (x)

Inverting WΨ on its range by the adjoint operator, one gets a
reconstruction formula

f = W−1
Ψ φ = W ∗

Ψφ =

∫
X

φ(x) S−1 ψx dν(x), φ ∈ HΨ
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Unbounded frames : the general case - 1

The case S−1 unbounded

Ψ is total in H

Write RW := Ran(WΨ) and RS := Ran(S) = Dom(S−1)
Then one has :

H WΨ−→ RW ⊂ RW ⊂ L2(X , dν)

∪ ∪

Dom(S−1) = RS
WΨ−→ WΨ(RS ) ⊂L2(X , dν)

where RW = closure of RW in L2(X , dν)

Define the Hilbert space HΨ := WΨ(RS )
Ψ

(completion in norm ‖ · ‖Ψ)

Then the map WΨ, restricted to the dense domain Dom(S−1) = RS ,
is an isometry into HΨ :

〈WΨf ,WΨf ′〉Ψ = 〈f , f ′〉H, ∀ f , g ∈ RS (same calculation as before)

Thus WΨ extends by continuity to a unitary map from H onto

HΨ := WΨ(RS )
Ψ
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Unbounded frames : the general case - 2

Thus we get HΨ = RW , which therefore is a subspace (though not
necessarily closed) of L2(X , dν):

H WΨ−→ HΨ = RW ⊂ RW ⊂ L2(X , dν)

∪ ∪

Dom(S−1) = RS
WΨ−→ WΨ(RS ) ⊂ L2(X , dν)

S−1
Ψ := WΨ S−1 W−1

Ψ = [WΨ S W−1
Ψ ]−1 is a positive self-adjoint

operator, with domain dense in RW , and the norm ‖·‖Ψ is equivalent

to the graph norm of S
−1/2
Ψ , so that

Dom(S
−1/2
Ψ ) = HΨ = RW ⊂ RW ⊂ L2(X , dν)

W−1
Ψ : HΨ → H is unitary, hence it is the adjoint of WΨ : H → HΨ

⇒ SΨ and S−1
Ψ are unitary images of S and S−1, thus

‖SΨ‖Ψ = ‖S‖H
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Unbounded frames : the general case - 3

Definition : the unbounded frame Ψ = {ψx , x ∈ X} is regular if

ψx ∈ Dom(S−1), ∀ x ∈ X

⇒ the reproducing kernel K(x , y) = 〈ψx , S
−1ψy 〉 is a bona fide function on

X × X

If Ψ is regular, we get the same reconstruction formula

f = W−1
Ψ φ = W ∗

Ψφ =

∫
X

φ(x) S−1 ψx dν(x), φ ∈ HΨ

If Ψ is not regular, use language of distributions :

K(x , y) defines a bounded sesquilinear form over HΨ

Best formulation : in terms of a Gel’fand triplet

HΨ ⊂ H0 ⊂ H×Ψ

where

H0 := HΨ = RW = closure of HΨ in L2(X , dν)

H×Ψ = conjugate dual of HΨ

⇒ H×Ψ carries the unbounded version of the dual frame
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If Ψ is regular, we get the same reconstruction formula

f = W−1
Ψ φ = W ∗

Ψφ =

∫
X

φ(x) S−1 ψx dν(x), φ ∈ HΨ

If Ψ is not regular, use language of distributions :

K(x , y) defines a bounded sesquilinear form over HΨ

Best formulation : in terms of a Gel’fand triplet

HΨ ⊂ H0 ⊂ H×Ψ

where

H0 := HΨ = RW = closure of HΨ in L2(X , dν)

H×Ψ = conjugate dual of HΨ

⇒ H×Ψ carries the unbounded version of the dual frame

Jean-Pierre Antoine Unbounded frames 10/26



Unbounded frames : the general case - 3

Definition : the unbounded frame Ψ = {ψx , x ∈ X} is regular if

ψx ∈ Dom(S−1), ∀ x ∈ X

⇒ the reproducing kernel K(x , y) = 〈ψx , S
−1ψy 〉 is a bona fide function on

X × X

If Ψ is regular, we get the same reconstruction formula

f = W−1
Ψ φ = W ∗

Ψφ =

∫
X

φ(x) S−1 ψx dν(x), φ ∈ HΨ

If Ψ is not regular, use language of distributions :

K(x , y) defines a bounded sesquilinear form over HΨ

Best formulation : in terms of a Gel’fand triplet

HΨ ⊂ H0 ⊂ H×Ψ

where

H0 := HΨ = RW = closure of HΨ in L2(X , dν)

H×Ψ = conjugate dual of HΨ

⇒ H×Ψ carries the unbounded version of the dual frame

Jean-Pierre Antoine Unbounded frames 10/26



Unbounded frames : the general case - 3

Definition : the unbounded frame Ψ = {ψx , x ∈ X} is regular if

ψx ∈ Dom(S−1), ∀ x ∈ X

⇒ the reproducing kernel K(x , y) = 〈ψx , S
−1ψy 〉 is a bona fide function on

X × X

If Ψ is regular, we get the same reconstruction formula

f = W−1
Ψ φ = W ∗

Ψφ =

∫
X

φ(x) S−1 ψx dν(x), φ ∈ HΨ

If Ψ is not regular, use language of distributions :

K(x , y) defines a bounded sesquilinear form over HΨ

Best formulation : in terms of a Gel’fand triplet

HΨ ⊂ H0 ⊂ H×Ψ

where

H0 := HΨ = RW = closure of HΨ in L2(X , dν)

H×Ψ = conjugate dual of HΨ

⇒ H×Ψ carries the unbounded version of the dual frame

Jean-Pierre Antoine Unbounded frames 10/26



Unbounded frames : Formulation in terms of a Gel’fand triplet - 1

Even if Ψ is not regular, one hasZZ
X×X

φ(x)K(x , y)χ(y) dν(x) dν(y) = 〈W−1
Ψ φ,SW−1

Ψ χ〉H

Since WΨ is an isometry and S is bounded, this relation defines a
bounded sesquilinear form over HΨ :

K Ψ(φ, χ) = 〈W−1
Ψ φ,SW−1

Ψ χ〉H

Let H×Ψ = completion of HΨ in the norm given by K Ψ

Reproducing property of K(x , y) impliesZ
X

φ(x)χ(x) dν(x) = 〈φ, χ〉L2(X , dν) = K Ψ(φ, χ)

Thus, with continuous and dense range embeddings,

HΨ ⊂ H0 ⊂ H×Ψ

where

. HΨ = RW = Hilbert space for the norm ‖·‖Ψ = 〈·,WΨ S−1 W−1
Ψ ·〉

1/2

. H0 = HΨ is the closure of HΨ in L2(X , dν)

. H×Ψ = completion of H0 in the norm ‖·‖×Ψ := 〈·,WΨ S W−1
Ψ ·〉

1/2

= conjugate dual of HΨ
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Unbounded frames : the continuous case - 5

H×Ψ = conjugate dual of HΨ :

K Ψ bounded ⇒ Xφ := K Ψ(φ, ·) defines, for each φ ∈ HΨ, an element
Xφ of the conjugate dual of HΨ

Inner product 〈Xφ,Xχ〉Ψ× = 〈W−1
Ψ φ, SW−1

Ψ χ〉H + completion
⇒ Hilbert space H×Ψ

One has also, for each X ∈ H×Ψ ,

X (φ) = 〈X ,Xφ〉 = 〈X ,K Ψ(φ, ·)〉Ψ×

which expresses the reproducing property of the kernel K Ψ as a function

over HΨ × HΨ

If S−1 is bounded (frame), the three Hilbert spaces coincide as sets, with

equivalent norms, since S ,S−1 ∈ GL(H)

If Ψ is regular, all three spaces HΨ,H0,H
×
Ψ are reproducing kernel Hilbert

spaces, with the same kernel K(x , y) = 〈ψx ,S
−1ψy 〉

One obtains another Gel’fand triple via the map WΨ :

H̃Ψ ⊂ H̃0 ⊂ H̃×Ψ

where eH0 is a reproducing kernel subspace of L2(X , dν)
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The discrete case : Notation

X = discrete set, ν counting measure ⇒ usual discrete setting

L2(X , dν) becomes `2

Frame = sequence Ψ = (ψn, n ∈ Γ)

Analysis operator WΨ becomes C : H → `2 : C(f ) = {〈ψn, f 〉, n ∈ Γ}

Synthesis operator D : `2 → H :

D(c) =
X

n

cnψn, c = (cn)

Then D = C∗, C = D∗, frame operator S = C∗C reads

Sf =
X

k

〈ψk , f 〉ψk , for all f ∈ H, 〈f ,Sf 〉 =
X

k

|〈ψk , f 〉|2

For any operator O, denote RO := Ran(O)

⇒ RW ≡ Ran(WΨ) becomes RC := Ran(C) ⊂ `2, RD ⊂ H, RS ⊂ H

The new inner product on RC reads

〈c, d〉Ψ = 〈c,CS−1C−1d〉`2

Note : same definitions hold if Ψ is only a Bessel sequence
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Discrete frames

Summary of known results :

Theorem

Let Ψ = (ψk ) be a frame in H, with analysis operator C : H → `2,
synthesis operator D : `2 → H and frame operator S : H → H. Then:

(1) Ψ is total in H

(2) RC is a closed subspace of `2. The analysis operator C is a unitary
operator from H onto RC , if RC is equipped with the inner product
〈c, d〉Ψ = 〈c,CS−1C−1d〉`2 . This is a Hilbert space denoted by HΨ

(3) The projection PΨ from `2 onto RC is given by PΨ = CS−1D. It is a
matrix operator G, given by Gk,l = 〈ψk , S

−1ψl〉

(4) HΨ is a reproducing kernel Hilbert space with kernel given by the matrix
Gk,l = 〈ψk , S

−1ψl〉

(5) C is unitary as operator on HΨ, and so can be inverted on its range by its
adjoint, to get the reconstruction formula

f = S−1DCf =
X

k

〈ψk , f 〉S−1ψk , for every f ∈ H
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Discrete unbounded frames - 1

Let Ψ be an unbounded frame :

0 <
∑
n∈Γ

|〈ψn, f 〉|2 6 M ‖f ‖2
,∀ f ∈ H, f 6= 0

⇔ Ψ is a total Bessel sequence

For the standard operators, one has :

Lemma

Let Ψ be an unbounded frame. Then,

The analysis operator C is injective and bounded

The synthesis operator D is bounded with dense range

The frame operator S = C∗C is bounded, self-adjoint and positive

S−1 is densely defined, self-adjoint and positive.

RΨ
C ⊆ RC ⊆ RC , with dense inclusions, where RΨ

C := C(RS ) and RC denotes the

closure of RC in `2
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Discrete unbounded frames - 2

Theorem

Define the operator GΨ : RC → RΨ
C by GΨ = CSC−1.

Then GΨ is bounded, positive and symmetric

Define G−1
Ψ : RΨ

C → RC by G−1
Ψ = CS−1C−1.

Then G−1
Ψ is positive and essentially self-adjoint.

GΨ and G−1
Ψ are bijective and inverse to each other.

Let G = GΨ. Then G : RC → RG ⊆ RC is bounded, self-adjoint and
positive, and G = CD|RC

.

Let G−1 = G−1
Ψ . Then G−1 : D(G−1) ⊂ RC → RC is self-adjoint and

positive, with domain Dom(G−1) = RG = CRD .

Proof :

First G−1
Ψ = C−1∗C−1|RΨ

C
is symmetric, therefore closable, and

positive.
Then G−1

Ψ has defect indices (0,0) and thus is essentially self-adjoint.
G−1 is positive, since its inverse G is bounded and thus the spectrum
of G−1 is bounded away from 0.
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Discrete unbounded frames - 3

Putting everything together, we have the following diagram :

H RC ⊆ RC ⊆ `2-

C−1
�

C

?

6

?

6

H ⊇ Dom(S−1) = RS

���
���

����
����

S−1S GΨ G−1
Ψ

RΨ
C ⊆ `2-

C−1

D

�
C

Since G−1 is self-adjoint and positive, the inner product

〈c , d〉Ψ = 〈c ,G−1d〉`2

makes sense on RΨ
C

Define the Hilbert space HΨ := RΨ
C

Ψ
(completion in norm ‖ · ‖Ψ)
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Discrete unbounded frames - 4

Fundamental result :

Theorem

Let the Hilbert space HΨ be defined as above. Then :

(1) HΨ coincides with RC and C : H → HΨ is an isomorphism (unitary map).

(2) The norm ‖.‖Ψ is equivalent to the graph norm of G−1/2 and, therefore,

Dom(G−1/2) = HΨ.

(3) C : H → HΨ can be inverted on HΨ by its adjoint C∗(Ψ) = S−1D�HΨ,
which yields the following reconstruction formula, for every f ∈ RS ,

f = C∗(Ψ)Cf =
“

S−1D
”

Cf

(4) For all f ∈ RS , we also have

f =
X

k

〈ψk ,C
∗(Ψ)

G−1Cf 〉ψk

(5) For all f ∈ RD , we have the alternative reconstruction formula

f =
X

k

h
G−1 (〈ψk , f 〉H)

i
ψk
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Discrete unbounded frames - 5

Exactly as in the continuous case, we have the following diagram:

H C−→ HΨ = RC ⊂ RC ⊂ `2

∪ ∪

Dom(S−1) = RS
C−→ RΨ

C ⊂ `2

Corollary

G 1/2 : RC → HΨ is an isomorphism and so is its inverse G−1/2 : HΨ → RC .

In order to get a nice reproducing kernel, we have to assume Ψ to be

regular. Indeed:

Theorem

Let (ψk ) be a regular unbounded frame. Then HΨ is a reproducing kernel

Hilbert space, with kernel given by the operator S−1D, which is a matrix

operator, given by the matrix G, where

Gk,l = 〈ψk ,S
−1ψl〉 = 〈ψk ,C

−1G−1Cψl〉.
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Discrete unbounded frames - 6

Proof : Let φ = Cf ∈ HΨ. Then,∑
l

Gk,lφl =
∑

l

〈ψk ,S
−1ψl〉φl = 〈ψk ,S

−1
∑

l

ψlφl〉 = 〈ψk ,S
−1Dφ〉

= (CS−1Dφ)k = (CS−1DCf )k = (Cf )k = φk .

If Ψ is not regular, we have to use a Gel’fand triplet as in the continuous

case.

Conclusion : everything works as usual, including reconstruction, provided

Ψ is regular, i.e. ψn ∈ Dom(S−1), ∀ n
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Discrete unbounded frames - Example - 1

Let (ek ) be an ONB in H with index set N. Let ψk = 1
k ek . Then

(ψk ) is an unbounded frame :

0 <
∑

k

|〈ψk , f 〉|2 6
∑

k

|〈ek , f 〉|2 = ‖f ‖2

The lower bound is 0, since for f = ep, one has
∑
k

|〈ψk , f 〉|2 = 1
p2

Let φk = k ek : the sequence (φk ) is dual to (ψk ), since one has∑
k

〈ψk , f 〉φk = f

This is the unbounded dual frame, living in H×Ψ
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Discrete unbounded frames - Example - 2

In this case, the frame operator is S = diag( 1
k

) and S−1 = diag(k),

so that the inner products are, respectively :

For HΨ : 〈c, d〉Ψ =
P

k k ck dk

For H0 : 〈c, d〉0 =
P

k ck dk

For H×Ψ : 〈c, d〉×Ψ =
X

k

1

k
ck dk

The sequence used by Gabor in his original IEE-paper, a Gabor system

with a Gaussian window, a = 1 and b = 1, is exactly such a unbounded

frame

Generalization :

(mnen), where m ∈ `∞ has a subsequence converging to zero and
mn 6= 0,∀n : an unbounded frame, not a frame

( 1
mn

en) : satisfies the lower frame condition, but is not Bessel.
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Duality - 1

In the general case, we have only weak convergence of integrals, in

particular, the reconstruction formula

Here, for sequences, we want more : series expansions, preferably with

unconditional convergence

Series expansions for a frame Φ :

f =
∑
〈φn, f 〉ψn =

∑
〈ψn, f 〉φn, ∀ f ∈ H, via some sequence Ψ

In the unbounded case :

Lemma

Let Φ be a Bessel sequence in H. If there exists Ψ such that (at least)
one of the following three conditions hold:

(a1)
P

n〈ψn, f 〉φn = f , ∀ f ∈ H

(a2)
P

n〈φn, f 〉ψn = f with unconditional convergence of the series for every
f ∈ H

(a3)
P

n〈φn, f 〉ψn = f , ∀ f ∈ H, and
P

n〈ψn, f 〉φn converges for all f ∈ H

then Φ is an unbounded frame for H and Ψ satisfies the lower frame condition.
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Duality - 2

This suggests a kind of duality

Ψ= frame with bounds (m, M)

⇔ canonical dual eΨ = frame with bounds (M−1,m−1)

Unbounded frame Ψ ' m = 0⇒ S bounded, S−1 unbounded

‘Dual’ eΨ = sequence satisfying the lower frame condition

⇒ S unbounded, S−1 bounded

From exact results, there is duality between

Unbounded frames = complete Bessel sequences

Complete sequences satisfying the lower frame condition

⇒ various series expansions, with appropriate convergence
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Generalizations

Generalization : Rank n frames

A set of vectors ηi
x ∈ H, i = 1, 2, . . . , n <∞, x ∈ X , is a rank n

frame F = F{ηi
x , S , n} if

(i) for all x ∈ X , {ηi
x , i = 1, 2, . . . , n} is a linearly independent set

(ii) there exists a positive operator S ∈ GL(H) such that, with weak
convergence,

nX
i=1

Z
X
|ηi

x 〉〈ηi
x | dν(x) :=

Z
X

Λ(x) dν(x) = S

(Λ(x) = positive, operator valued function on X )

⇒ various notions of equivalence of frames

Further generalization : weighted rank n frames frames (g -frames)

For n > 1, connection with fusion frames ?

Connection with frame multipliers ?
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