Unbounded frames

Jean-Pierre Antoine

Institut de Physique Théorique, Université catholique de Louvain Louvain-la-Neuve, Belgium
(Joint work with Peter Balazs and Diana Stoeva)

FNRS Contact Group "Wavelets and Applications"
April 27, 2010
Esneux

From coherent states to frames - 1

Three successive stages (ST.Ali - JPA - J-P.Gazeau, 1991-1993)
(1) Coherent states on locally compact group

$$
\int_{G}\left|\eta_{g}\right\rangle\left\langle\eta_{g}\right| \mathrm{d} \nu(g)=I \quad \Leftrightarrow \quad \int_{G}\left|\left\langle\eta_{g} \mid \phi\right\rangle\right|^{2} \mathrm{~d} \nu(g)=\|\phi\|^{2}, \quad \forall \phi \in \mathcal{H}
$$

- $G=$ locally compact group, with (left) Haar measure $\mathrm{d} \nu(g)$
- $\eta \in \mathcal{H}$, a fixed vector in the Hilbert space \mathcal{H}
- $\eta_{g}=U(g) \eta, U=$ strongly continuous, square integrable unitary representation of G on \mathcal{H}

From coherent states to frames - 1

Three successive stages (ST.Ali - JPA - J-P.Gazeau, 1991-1993)
(1) Coherent states on locally compact group

$$
\int_{G}\left|\eta_{g}\right\rangle\left\langle\eta_{g}\right| \mathrm{d} \nu(g)=I \quad \Leftrightarrow \quad \int_{G}\left|\left\langle\eta_{g} \mid \phi\right\rangle\right|^{2} \mathrm{~d} \nu(g)=\|\phi\|^{2}, \quad \forall \phi \in \mathcal{H}
$$

- $G=$ locally compact group, with (left) Haar measure $\mathrm{d} \nu(g)$
- $\eta \in \mathcal{H}$, a fixed vector in the Hilbert space \mathcal{H}
- $\eta_{g}=U(g) \eta, U=$ strongly continuous, square integrable unitary representation of G on \mathcal{H}
(2) Coherent states on homogeneous space
- $H=$ closed subgroup of $G, X=G / H, \nu=$ invariant measure on X, Borel section $\sigma: G / H \rightarrow G$,
- $U=$ unitary representation of G, square integrable modulo the subgroup H and the Borel section σ, i.e.

$$
\int_{X}\left|\eta_{\sigma(x)}\right\rangle\left\langle\eta_{\sigma(x)}\right| \mathrm{d} \nu(x)=S_{\sigma}, \quad \eta_{\sigma(x)}=U(\sigma(x)) \eta
$$

converges weakly to a bounded, positive, invertible operator S_{σ}

$$
\Longleftrightarrow \int_{X}\left|\left\langle\eta_{\sigma(x)} \mid \phi\right\rangle\right|^{2} \mathrm{~d} \nu(x)=\left\langle\phi, S_{\sigma} \phi\right\rangle, \quad \forall \phi \in \mathcal{H}
$$

(3) Reproducing triples: group structure is not needed !

Reproducing triple $\{\mathfrak{H}, \Lambda, S\}$:

- measure space (X, ν)
- bounded, positive, invertible operator S, acting on a Hilbert space \mathcal{H}
- ν-measurable function \wedge from X into the bounded positive operators on \mathcal{H}, s.t. (weakly)

$$
\int_{X} \Lambda(x) \mathrm{d} \nu(x)=S
$$

(3) Reproducing triples: group structure is not needed !

Reproducing triple $\{\mathfrak{H}, \Lambda, S\}$:

- measure space (X, ν)
- bounded, positive, invertible operator S, acting on a Hilbert space \mathcal{H}
- ν-measurable function \wedge from X into the bounded positive operators on \mathcal{H}, s.t. (weakly)

$$
\int_{X} \Lambda(x) \mathrm{d} \nu(x)=S
$$

\Rightarrow overcomplete family of (generalized) coherent states
(3) Reproducing triples: group structure is not needed!

Reproducing triple $\{\mathfrak{H}, \Lambda, S\}$:

- measure space (X, ν)
- bounded, positive, invertible operator S, acting on a Hilbert space \mathcal{H}
- ν-measurable function \wedge from X into the bounded positive operators on \mathcal{H}, s.t. (weakly)

$$
\int_{X} \Lambda(x) \mathrm{d} \nu(x)=S
$$

\Rightarrow overcomplete family of (generalized) coherent states

- $\{\mathfrak{H}, \Lambda, S\}=$ frame if
- rank $\Lambda(x)$ is constant and finite
- S^{-1} is a bounded operator

Frames and unbounded frames - 1

- Coherent states
- $X=$ locally compact space with measure ν
- $\Psi:=\left\{\psi_{x}, x \in X\right\} \subset \mathcal{H}$ a family of vectors indexed by points of X
- Ψ is a set of coherent states (CS) if

$$
\int_{x}\left\langle f, \psi_{x}\right\rangle\left\langle\psi_{x}, f^{\prime}\right\rangle \mathrm{d} \nu(x)=\left\langle f, S f^{\prime}\right\rangle, \forall f, f^{\prime} \in \mathcal{H}
$$

where S is a bounded, positive, self-adjoint, invertible operator on \mathcal{H}

Frames and unbounded frames - 1

- Coherent states
- $X=$ locally compact space with measure ν
- $\Psi:=\left\{\psi_{x}, x \in X\right\} \subset \mathcal{H}$ a family of vectors indexed by points of X
- Ψ is a set of coherent states (CS) if

$$
\int_{x}\left\langle f, \psi_{x}\right\rangle\left\langle\psi_{x}, f^{\prime}\right\rangle \mathrm{d} \nu(x)=\left\langle f, S f^{\prime}\right\rangle, \forall f, f^{\prime} \in \mathcal{H}
$$

where S is a bounded, positive, self-adjoint, invertible operator on \mathcal{H}

- If S^{-1} is bounded, usual frame condition : $\left\{\psi_{x}\right\} \subset \mathcal{H}$ is a frame if there exist constants $\mathrm{m}>0$ and $\mathrm{M}<\infty$ such that

$$
\begin{aligned}
\mathrm{m}\|f\|^{2} & \leqslant \int_{x}\left|\left\langle\psi_{x}, f\right\rangle\right|^{2} \mathrm{~d} \nu(x) \leqslant \mathrm{M}\|f\|^{2}, \forall f \in \mathcal{H} \\
\Rightarrow\langle f, S f\rangle & =\int_{X}\left|\left\langle\psi_{x}, f\right\rangle\right|^{2} \mathrm{~d} \nu(x)
\end{aligned}
$$

$S=$ frame operator, $\operatorname{Sp}(S) \subset[m, M]$

Frames and unbounded frames - 1

- Coherent states
- $X=$ locally compact space with measure ν
- $\Psi:=\left\{\psi_{x}, x \in X\right\} \subset \mathcal{H}$ a family of vectors indexed by points of X
- Ψ is a set of coherent states (CS) if

$$
\int_{x}\left\langle f, \psi_{x}\right\rangle\left\langle\psi_{x}, f^{\prime}\right\rangle \mathrm{d} \nu(x)=\left\langle f, S f^{\prime}\right\rangle, \forall f, f^{\prime} \in \mathcal{H}
$$

where S is a bounded, positive, self-adjoint, invertible operator on \mathcal{H}

- If S^{-1} is bounded, usual frame condition : $\left\{\psi_{x}\right\} \subset \mathcal{H}$ is a frame if there exist constants $\mathrm{m}>0$ and $\mathrm{M}<\infty$ such that

$$
\begin{aligned}
\mathrm{m}\|f\|^{2} & \leqslant \int_{x}\left|\left\langle\psi_{x}, f\right\rangle\right|^{2} \mathrm{~d} \nu(x) \leqslant \mathrm{M}\|f\|^{2}, \forall f \in \mathcal{H} \\
\Rightarrow\langle f, S f\rangle & =\int_{X}\left|\left\langle\psi_{x}, f\right\rangle\right|^{2} \mathrm{~d} \nu(x)
\end{aligned}
$$

$S=$ frame operator, $\operatorname{Sp}(S) \subset[m, M]$

- If S^{-1} is unbounded, with dense domain $\operatorname{Dom}\left(S^{-1}\right)$, so that we can write

$$
0<\int_{X}\left|\left\langle\psi_{x}, f\right\rangle\right|^{2} \mathrm{~d} \nu(x) \leqslant \mathrm{M}\|f\|^{2}, \forall f \in \mathcal{H}
$$

then Ψ is called an unbounded frame

Program :

- How can one reconstruct the signal?

Frames and unbounded frames - 2

Program :

- How can one reconstruct the signal?
- Formalism known in the continuous case (via the Coherent states approach), will be particularized to discrete setting

Program :

- How can one reconstruct the signal?
- Formalism known in the continuous case (via the Coherent states approach), will be particularized to discrete setting
- May be formulated in a Gel'fand triplet $\Phi \subset \mathfrak{H} \subset \Phi^{\times}$, in which Φ is essentially the domain of S^{-1} with graph norm

Properties of frames (S^{-1} bounded)

- Ψ is total in \mathcal{H}

Properties of frames (S^{-1} bounded)

- Ψ is total in \mathcal{H}
- Define the CS map $W_{\psi}: \mathcal{H} \rightarrow L^{2}(X, \mathrm{~d} \nu)$ by

$$
\left(W_{\psi} f\right)(x)=\left\langle\psi_{x}, f\right\rangle, f \in \mathcal{H}
$$

Then $W_{\Psi}^{*} W_{\Psi}=S$, since $\left\|W_{\Psi} f\right\|_{L^{2}(X)}^{2}=\left\|S^{1 / 2} f\right\|_{\mathcal{H}}^{2}=\langle f, S f\rangle$

Properties of frames (S^{-1} bounded)

- Ψ is total in \mathcal{H}
- Define the CS map $W_{\Psi}: \mathcal{H} \rightarrow L^{2}(X, \mathrm{~d} \nu)$ by

$$
\left(W_{\Psi} f\right)(x)=\left\langle\psi_{x}, f\right\rangle, f \in \mathcal{H}
$$

Then $W_{\Psi}^{*} W_{\Psi}=S$, since $\left\|W_{\Psi} f\right\|_{L^{2}(X)}^{2}=\left\|S^{1 / 2} f\right\|_{\mathcal{H}}^{2}=\langle f, S f\rangle$

- Since $S>0, W_{\Psi}$ is injective and $W_{\Psi}^{-1}: \operatorname{Ran}\left(W_{\Psi}\right): \rightarrow \mathcal{H}$ is well-defined

Properties of frames (S^{-1} bounded)

- Ψ is total in \mathcal{H}
- Define the CS map $W_{\Psi}: \mathcal{H} \rightarrow L^{2}(X, \mathrm{~d} \nu)$ by

$$
\left(W_{\Psi} f\right)(x)=\left\langle\psi_{x}, f\right\rangle, f \in \mathcal{H}
$$

Then $W_{\Psi}^{*} W_{\Psi}=S$, since $\left\|W_{\Psi} f\right\|_{L^{2}(X)}^{2}=\left\|S^{1 / 2} f\right\|_{\mathcal{H}}^{2}=\langle f, S f\rangle$

- Since $S>0, W_{\Psi}$ is injective and $W_{\Psi}^{-1}: \operatorname{Ran}\left(W_{\Psi}\right): \rightarrow \mathcal{H}$ is well-defined
- $\operatorname{Ran}\left(W_{\Psi}\right)$ is a closed subspace \mathfrak{H}_{ψ} of $L^{2}(X, \mathrm{~d} \nu)$, which is complete for the new scalar product

$$
\left\langle\phi, \phi^{\prime}\right\rangle_{\Psi}:=\left\langle\phi, W_{\Psi} S^{-1} W_{\Psi}^{-1} \phi^{\prime}\right\rangle_{L^{2}(X)}, \phi, \phi^{\prime} \in \operatorname{Ran}\left(W_{\Psi}\right)
$$

and $W_{\Psi}: \mathcal{H} \rightarrow \mathfrak{H}_{\Psi}$ is unitary:

$$
\begin{aligned}
\left\langle\phi, \phi^{\prime}\right\rangle_{\Psi} & =\left\langle W_{\Psi} f, W_{\Psi} f^{\prime}\right\rangle_{\Psi}=\left\langle W_{\Psi} f, W_{\Psi} S^{-1} W_{\Psi}^{-1} W_{\Psi} f^{\prime}\right\rangle_{L^{2}(X)} \\
& =\left\langle W_{\Psi} f, W_{\Psi} S^{-1} f^{\prime}\right\rangle_{L^{2}(X)} \\
& =\left\langle f, W_{\Psi}^{*} W_{\Psi} S^{-1} f^{\prime}\right\rangle_{\mathcal{H}} \\
& =\left\langle f, f^{\prime}\right\rangle_{\mathcal{H}}
\end{aligned}
$$

- The projection from $L^{2}(X, \mathrm{~d} \nu)$ onto \mathfrak{H}_{Ψ} is $\mathbb{P}_{\Psi}=W_{\Psi} W_{\Psi}{ }^{*}$ and it is an integral operator with kernel $K(x, y)=\left\langle\psi_{x}, S^{-1} \psi_{y}\right\rangle$ i.e., \mathfrak{H}_{ψ} is a reproducing kernel Hilbert space
- The projection from $L^{2}(X, \mathrm{~d} \nu)$ onto \mathfrak{H}_{Ψ} is $\mathbb{P}_{\Psi}=W_{\Psi} W_{\Psi}{ }^{*}$ and it is an integral operator with kernel $K(x, y)=\left\langle\psi_{x}, S^{-1} \psi_{y}\right\rangle$ i.e., \mathfrak{H}_{Ψ} is a reproducing kernel Hilbert space
\Rightarrow The elements of \mathfrak{H}_{Ψ} are genuine functions, not equivalence classes
- The projection from $L^{2}(X, \mathrm{~d} \nu)$ onto \mathfrak{H}_{Ψ} is $\mathbb{P}_{\Psi}=W_{\Psi} W_{\Psi}{ }^{*}$ and it is an integral operator with kernel $K(x, y)=\left\langle\psi_{x}, S^{-1} \psi_{y}\right\rangle$ i.e., \mathfrak{H}_{ψ} is a reproducing kernel Hilbert space
\Rightarrow The elements of \mathfrak{H}_{Ψ} are genuine functions, not equivalence classes
- All this can also be expressed in terms of the evaluation map $E(x): f \mapsto f(x)$
- The projection from $L^{2}(X, \mathrm{~d} \nu)$ onto \mathfrak{H}_{Ψ} is $\mathbb{P}_{\Psi}=W_{\Psi} W_{\Psi}{ }^{*}$ and it is an integral operator with kernel $K(x, y)=\left\langle\psi_{x}, S^{-1} \psi_{y}\right\rangle$ i.e., \mathfrak{H}_{Ψ} is a reproducing kernel Hilbert space
\Rightarrow The elements of \mathfrak{H}_{Ψ} are genuine functions, not equivalence classes
- All this can also be expressed in terms of the evaluation map $E(x): f \mapsto f(x)$
- Inverting W_{Ψ} on its range by the adjoint operator, one gets a reconstruction formula

$$
f=W_{\Psi}^{-1} \phi=W_{\Psi}^{*} \phi=\int_{X} \phi(x) S^{-1} \psi_{x} \mathrm{~d} \nu(x), \quad \phi \in \mathfrak{H}_{\psi}
$$

Unbounded frames: the general case - 1
The case S^{-1} unbounded

- Ψ is total in \mathcal{H}

The case S^{-1} unbounded

- Ψ is total in \mathcal{H}
- Write $R_{W}:=\operatorname{Ran}\left(W_{W}\right)$ and $R_{S}:=\operatorname{Ran}(S)=\operatorname{Dom}\left(S^{-1}\right)$ Then one has:

$$
\begin{array}{llll}
\mathcal{H} & \xrightarrow{W_{\Psi}} & R_{W} \subset & \overline{R_{W}} \subset L^{2}(X, \mathrm{~d} \nu) \\
\cup & \cup &
\end{array}
$$

$$
\operatorname{Dom}\left(S^{-1}\right)=R_{S} \quad \xrightarrow{W_{\Psi}} \quad W_{\Psi}\left(R_{S}\right) \subset L^{2}(X, \mathrm{~d} \nu)
$$

where $\overline{R_{W}}=$ closure of R_{w} in $L^{2}(X, \mathrm{~d} \nu)$

The case S^{-1} unbounded

- Ψ is total in \mathcal{H}
- Write $R_{W}:=\operatorname{Ran}\left(W_{\Psi}\right)$ and $R_{S}:=\operatorname{Ran}(S)=\operatorname{Dom}\left(S^{-1}\right)$

Then one has :

$$
\begin{array}{ccc}
\mathcal{H} & \xrightarrow{W_{\Psi}} & R_{W} \subset \\
\cup & & \overline{R_{W}} \subset L^{2}(X, \mathrm{~d} \nu) \\
\operatorname{Dom}\left(S^{-1}\right)=R_{S} & \xrightarrow{W_{\Psi}} & W_{\Psi}\left(R_{S}\right) \subset L^{2}(X, \mathrm{~d} \nu)
\end{array}
$$

where $\overline{R_{W}}=$ closure of R_{W} in $L^{2}(X, \mathrm{~d} \nu)$

- Define the Hilbert space $\mathfrak{H}_{\psi}:={\overline{W_{\Psi}\left(R_{S}\right)}}{ }^{\psi}$
(completion in norm $\|\cdot\|_{\psi}$)
Then the map W_{Ψ}, restricted to the dense domain $\operatorname{Dom}\left(S^{-1}\right)=R_{S}$, is an isometry into \mathfrak{H}_{Ψ} :

$$
\left\langle W_{\Psi} f, W_{\Psi} f^{\prime}\right\rangle_{\Psi}=\left\langle f, f^{\prime}\right\rangle_{\mathcal{H}}, \forall f, g \in R_{S} \quad \text { (same calculation as before) }
$$

The case S^{-1} unbounded

- Ψ is total in \mathcal{H}
- Write $R_{W}:=\operatorname{Ran}\left(W_{\Psi}\right)$ and $R_{S}:=\operatorname{Ran}(S)=\operatorname{Dom}\left(S^{-1}\right)$ Then one has:

$$
\begin{array}{ccc}
\mathcal{H} & \xrightarrow{W_{\Psi}} & R_{W} \subset \\
\cup & \overline{R_{W}} \subset L^{2}(X, \mathrm{~d} \nu) \\
\operatorname{Dom}\left(S^{-1}\right)=R_{S} & \xrightarrow{W_{\Psi}} & W_{\Psi}\left(R_{S}\right) \subset L^{2}(X, \mathrm{~d} \nu)
\end{array}
$$

where $\overline{R_{W}}=$ closure of R_{W} in $L^{2}(X, \mathrm{~d} \nu)$

- Define the Hilbert space $\mathfrak{H}_{\Psi}:={\overline{W_{\Psi}\left(R_{S}\right)}}{ }^{\psi}$
(completion in norm $\|\cdot\|_{\psi}$)
Then the map W_{Ψ}, restricted to the dense domain $\operatorname{Dom}\left(S^{-1}\right)=R_{S}$, is an isometry into \mathfrak{H}_{Ψ} :

$$
\left\langle W_{\Psi} f, W_{\Psi} f^{\prime}\right\rangle_{\Psi}=\left\langle f, f^{\prime}\right\rangle_{\mathcal{H}}, \forall f, g \in R_{S} \quad \text { (same calculation as before) }
$$

- Thus W_{ψ} extends by continuity to a unitary map from \mathcal{H} onto $\mathfrak{H}_{\psi}:={\overline{W_{\Psi}\left(R_{S}\right)}}{ }^{\prime}$
- Thus we get $\mathfrak{H}_{\Psi}=R_{W}$, which therefore is a subspace (though not necessarily closed) of $L^{2}(X, \mathrm{~d} \nu)$:

$$
\begin{array}{ccc}
\mathcal{H} & \xrightarrow{W_{\Psi}} & \mathfrak{H}_{\Psi}=R_{W} \subset \overline{R_{W}} \subset L^{2}(X, \mathrm{~d} \nu) \\
\cup & & \cup \\
\operatorname{Dom}\left(S^{-1}\right)=R_{S} & \xrightarrow{W_{\Psi}} & W_{\Psi}\left(R_{S}\right) \subset L^{2}(X, \mathrm{~d} \nu)
\end{array}
$$

- Thus we get $\mathfrak{H}_{\Psi}=R_{W}$, which therefore is a subspace (though not necessarily closed) of $L^{2}(X, \mathrm{~d} \nu)$:

$$
\mathcal{H} \quad \xrightarrow{W_{\Psi}} \quad \mathfrak{H}_{\Psi}=R_{W} \subset \overline{R_{W}} \subset L^{2}(X, \mathrm{~d} \nu)
$$

$$
\operatorname{Dom}\left(S^{-1}\right)=R_{S} \quad \xrightarrow{W_{\Psi}} \quad W_{\Psi}\left(R_{S}\right) \subset L^{2}(X, \mathrm{~d} \nu)
$$

- $S_{\Psi}^{-1}:=W_{\Psi} S^{-1} W_{\Psi}^{-1}=\left[W_{\Psi} S W_{\Psi}^{-1}\right]^{-1}$ is a positive self-adjoint operator, with domain dense in $\overline{R_{W}}$, and the norm $\|\cdot\|_{\Psi}$ is equivalent to the graph norm of $S_{\Psi}^{-1 / 2}$, so that

$$
\operatorname{Dom}\left(S_{\Psi}^{-1 / 2}\right)=\mathfrak{H}_{\Psi}=R_{W} \subset \overline{R_{W}} \subset L^{2}(X, \mathrm{~d} \nu)
$$

- Thus we get $\mathfrak{H}_{\Psi}=R_{W}$, which therefore is a subspace (though not necessarily closed) of $L^{2}(X, \mathrm{~d} \nu)$:

$$
\mathcal{H} \quad \xrightarrow{W_{\Psi}} \quad \mathfrak{H}_{\Psi}=R_{W} \subset \overline{R_{W}} \subset L^{2}(X, \mathrm{~d} \nu)
$$

$$
\operatorname{Dom}\left(S^{-1}\right)=R_{S} \quad \xrightarrow{W_{\Psi}} \quad W_{\Psi}\left(R_{S}\right) \subset L^{2}(X, \mathrm{~d} \nu)
$$

- $S_{\Psi}^{-1}:=W_{\Psi} S^{-1} W_{\Psi}^{-1}=\left[W_{\Psi} S W_{\Psi}^{-1}\right]^{-1}$ is a positive self-adjoint operator, with domain dense in $\overline{R_{W}}$, and the norm $\|\cdot\|_{\Psi}$ is equivalent to the graph norm of $S_{\Psi}^{-1 / 2}$, so that

$$
\operatorname{Dom}\left(S_{\Psi}^{-1 / 2}\right)=\mathfrak{H}_{\Psi}=R_{W} \subset \overline{R_{W}} \subset L^{2}(X, \mathrm{~d} \nu)
$$

- $W_{\Psi}^{-1}: \mathfrak{H}_{\Psi} \rightarrow \mathcal{H}$ is unitary, hence it is the adjoint of $W_{\Psi}: \mathcal{H} \rightarrow \mathfrak{H}_{\Psi}$
- Thus we get $\mathfrak{H}_{\Psi}=R_{W}$, which therefore is a subspace (though not necessarily closed) of $L^{2}(X, \mathrm{~d} \nu)$:

$$
\mathcal{H} \quad \xrightarrow{W_{\Psi}} \quad \mathfrak{H}_{\Psi}=R_{W} \subset \overline{R_{W}} \subset L^{2}(X, \mathrm{~d} \nu)
$$

$$
\operatorname{Dom}\left(S^{-1}\right)=R_{S} \quad \xrightarrow{W_{\Psi}} \quad W_{\Psi}\left(R_{S}\right) \subset L^{2}(X, \mathrm{~d} \nu)
$$

- $S_{\Psi}^{-1}:=W_{\Psi} S^{-1} W_{\Psi}^{-1}=\left[W_{\Psi} S W_{\Psi}^{-1}\right]^{-1}$ is a positive self-adjoint operator, with domain dense in $\overline{R_{W}}$, and the norm $\|\cdot\|_{\Psi}$ is equivalent to the graph norm of $S_{\Psi}^{-1 / 2}$, so that

$$
\operatorname{Dom}\left(S_{\Psi}^{-1 / 2}\right)=\mathfrak{H}_{\Psi}=R_{W} \subset \overline{R_{W}} \subset L^{2}(X, \mathrm{~d} \nu)
$$

- $W_{\Psi}^{-1}: \mathfrak{H}_{\Psi} \rightarrow \mathcal{H}$ is unitary, hence it is the adjoint of $W_{\Psi}: \mathcal{H} \rightarrow \mathfrak{H}_{\Psi}$ $\Rightarrow S_{\Psi}$ and S_{ψ}^{-1} are unitary images of S and S^{-1}, thus

$$
\left\|S_{\Psi}\right\|_{\Psi}=\|S\|_{\mathcal{H}}
$$

- Definition: the unbounded frame $\Psi=\left\{\psi_{x}, x \in X\right\}$ is regular if $\psi_{x} \in \operatorname{Dom}\left(S^{-1}\right), \forall x \in X$
\Rightarrow the reproducing kernel $K(x, y)=\left\langle\psi_{x}, S^{-1} \psi_{y}\right\rangle$ is a bona fide function on $X \times X$
- Definition: the unbounded frame $\Psi=\left\{\psi_{x}, x \in X\right\}$ is regular if $\psi_{x} \in \operatorname{Dom}\left(S^{-1}\right), \forall x \in X$
\Rightarrow the reproducing kernel $K(x, y)=\left\langle\psi_{x}, S^{-1} \psi_{y}\right\rangle$ is a bona fide function on $X \times X$
- If Ψ is regular, we get the same reconstruction formula

$$
f=W_{\Psi}^{-1} \phi=W_{\Psi}^{*} \phi=\int_{X} \phi(x) S^{-1} \psi_{x} \mathrm{~d} \nu(x), \quad \phi \in \mathfrak{H}_{\Psi}
$$

- Definition: the unbounded frame $\Psi=\left\{\psi_{x}, x \in X\right\}$ is regular if $\psi_{x} \in \operatorname{Dom}\left(S^{-1}\right), \forall x \in X$
\Rightarrow the reproducing kernel $K(x, y)=\left\langle\psi_{x}, S^{-1} \psi_{y}\right\rangle$ is a bona fide function on $X \times X$
- If Ψ is regular, we get the same reconstruction formula

$$
f=W_{\Psi}^{-1} \phi=W_{\Psi}^{*} \phi=\int_{X} \phi(x) S^{-1} \psi_{x} \mathrm{~d} \nu(x), \quad \phi \in \mathfrak{H}_{\Psi}
$$

- If Ψ is not regular, use language of distributions: $K(x, y)$ defines a bounded sesquilinear form over \mathfrak{H}_{Ψ}
- Best formulation : in terms of a Gel'fand triplet

$$
\mathfrak{H}_{\Psi} \subset \mathfrak{H}_{0} \subset \mathfrak{H}_{\Psi}^{\times}
$$

where

- $\mathfrak{H}_{0}:=\overline{\mathfrak{H}_{\psi}}=\overline{R_{W}}=$ closure of \mathfrak{H}_{Ψ} in $L^{2}(X, \mathrm{~d} \nu)$
- $\mathfrak{H}_{\Psi}^{\times}=$conjugate dual of \mathfrak{H}_{ψ}
- Definition: the unbounded frame $\Psi=\left\{\psi_{x}, x \in X\right\}$ is regular if $\psi_{x} \in \operatorname{Dom}\left(S^{-1}\right), \forall x \in X$
\Rightarrow the reproducing kernel $K(x, y)=\left\langle\psi_{x}, S^{-1} \psi_{y}\right\rangle$ is a bona fide function on $X \times X$
- If Ψ is regular, we get the same reconstruction formula

$$
f=W_{\Psi}^{-1} \phi=W_{\Psi}^{*} \phi=\int_{X} \phi(x) S^{-1} \psi_{x} \mathrm{~d} \nu(x), \quad \phi \in \mathfrak{H}_{\Psi}
$$

- If Ψ is not regular, use language of distributions:
$K(x, y)$ defines a bounded sesquilinear form over \mathfrak{H}_{Ψ}
- Best formulation : in terms of a Gel'fand triplet

$$
\mathfrak{H}_{\Psi} \subset \mathfrak{H}_{0} \subset \mathfrak{H}_{\Psi}^{\times}
$$

where

- $\mathfrak{H}_{0}:=\overline{\mathfrak{H}_{\psi}}=\overline{R_{W}}=$ closure of \mathfrak{H}_{ψ} in $L^{2}(X, \mathrm{~d} \nu)$
- $\mathfrak{H}_{\Psi}^{\times}=$conjugate dual of \mathfrak{H}_{ψ}
$\Rightarrow \mathfrak{H}_{\Psi}^{\times}$carries the unbounded version of the dual frame
- Even if Ψ is not regular, one has

$$
\iint_{X \times X} \overline{\phi(x)} K(x, y) \chi(y) \mathrm{d} \nu(x) \mathrm{d} \nu(y)=\left\langle W_{\Psi}^{-1} \phi, S W_{\Psi}^{-1} \chi\right\rangle_{\mathcal{H}}
$$

- Even if Ψ is not regular, one has

$$
\iint_{X \times X} \overline{\phi(x)} K(x, y) \chi(y) \mathrm{d} \nu(x) \mathrm{d} \nu(y)=\left\langle W_{\Psi}^{-1} \phi, S W_{\Psi}^{-1} \chi\right\rangle_{\mathcal{H}}
$$

- Since W_{Ψ} is an isometry and S is bounded, this relation defines a bounded sesquilinear form over \mathfrak{H}_{Ψ} :

$$
K^{\Psi}(\phi, \chi)=\left\langle W_{\Psi}^{-1} \phi, S W_{\Psi}^{-1} \chi\right\rangle_{\mathcal{H}}
$$

- Even if Ψ is not regular, one has

$$
\iint_{X \times X} \overline{\phi(x)} K(x, y) \chi(y) \mathrm{d} \nu(x) \mathrm{d} \nu(y)=\left\langle W_{\Psi}^{-1} \phi, S W_{\Psi}^{-1} \chi\right\rangle_{\mathcal{H}}
$$

- Since W_{Ψ} is an isometry and S is bounded, this relation defines a bounded sesquilinear form over $\mathfrak{H} \Psi$:

$$
K^{\Psi}(\phi, \chi)=\left\langle W_{\Psi}^{-1} \phi, S W_{\Psi}^{-1} \chi\right\rangle_{\mathcal{H}}
$$

- Let $\mathfrak{H}_{\Psi}^{\times}=$completion of \mathfrak{H}_{Ψ} in the norm given by K^{Ψ}
- Even if Ψ is not regular, one has

$$
\iint_{X \times X} \overline{\phi(x)} K(x, y) \chi(y) \mathrm{d} \nu(x) \mathrm{d} \nu(y)=\left\langle W_{\Psi}^{-1} \phi, S W_{\Psi}^{-1} \chi\right\rangle_{\mathcal{H}}
$$

- Since W_{ψ} is an isometry and S is bounded, this relation defines a bounded sesquilinear form over \mathfrak{H}_{Ψ} :

$$
K^{\Psi}(\phi, \chi)=\left\langle W_{\Psi}^{-1} \phi, S W_{\Psi}^{-1} \chi\right\rangle_{\mathcal{H}}
$$

- Let $\mathfrak{H}_{\Psi}^{\times}=$completion of \mathfrak{H}_{Ψ} in the norm given by K^{Ψ}
- Reproducing property of $K(x, y)$ implies

$$
\int_{X} \overline{\phi(x)} \chi(x) \mathrm{d} \nu(x)=\langle\phi, \chi\rangle_{L^{2}(X, \mathrm{~d} \nu)}=K^{\psi}(\phi, \chi)
$$

Thus, with continuous and dense range embeddings,

$$
\mathfrak{H}_{\Psi} \subset \mathfrak{H}_{0} \subset \mathfrak{H}_{\Psi}^{\times}
$$

where
. $\mathfrak{H}_{\Psi}=R_{W}=$ Hilbert space for the norm $\|\cdot\|_{\Psi}=\left\langle\cdot, W_{\Psi} S^{-1} W_{\Psi}^{-1} \cdot\right\rangle^{1 / 2}$
. $\mathfrak{H}_{0}=\overline{\mathfrak{H}_{\psi}}$ is the closure of \mathfrak{H}_{ψ} in $L^{2}(X, \mathrm{~d} \nu)$
. $\mathfrak{H}_{\Psi}^{\times}=$completion of \mathfrak{H}_{0} in the norm $\|\cdot\|_{\psi}^{\times}:=\left\langle\cdot, W_{\Psi} S W_{\Psi}^{-1} \cdot\right\rangle^{1 / 2}$
$=$ conjugate dual of \mathfrak{H}_{ψ}

- $\mathfrak{H}_{\Psi}^{\times}=$conjugate dual of \mathfrak{H}_{Ψ} :
- K^{Ψ} bounded $\Rightarrow X_{\phi}:=K^{\Psi}(\phi, \cdot)$ defines, for each $\phi \in \mathfrak{H}_{\psi}$, an element X_{ϕ} of the conjugate dual of \mathfrak{H}_{Ψ}
- $\mathfrak{H}_{\Psi}^{\times}=$conjugate dual of \mathfrak{H}_{Ψ} :
- K^{Ψ} bounded $\Rightarrow X_{\phi}:=K^{\Psi}(\phi, \cdot)$ defines, for each $\phi \in \mathfrak{H}_{\psi}$, an element X_{ϕ} of the conjugate dual of \mathfrak{H}_{ψ}
- Inner product $\left\langle X_{\phi}, X_{\chi}\right\rangle_{\Psi X}=\left\langle W_{\psi}^{-1} \phi, S W_{\psi}^{-1} \chi\right\rangle_{\mathcal{H}}+$ completion \Rightarrow Hilbert space $\mathfrak{H}_{\Psi}^{\times}$
- $\mathfrak{H}_{\Psi}^{\times}=$conjugate dual of \mathfrak{H}_{Ψ} :
- K^{Ψ} bounded $\Rightarrow X_{\phi}:=K^{\Psi}(\phi, \cdot)$ defines, for each $\phi \in \mathfrak{H}_{\psi}$, an element X_{ϕ} of the conjugate dual of \mathfrak{H}_{ψ}
- Inner product $\left\langle X_{\phi}, X_{\chi}\right\rangle_{\Psi X}=\left\langle W_{\psi}^{-1} \phi, S W_{\psi}^{-1} \chi\right\rangle_{\mathcal{H}}+$ completion \Rightarrow Hilbert space $\mathfrak{H}_{\Psi}^{\times}$
- One has also, for each $X \in \mathfrak{H}_{\psi}^{\times}$,

$$
X(\phi)=\left\langle X, X_{\phi}\right\rangle=\left\langle X, K^{\Psi}(\phi, \cdot)\right\rangle_{\Psi \times}
$$

which expresses the reproducing property of the kernel K^{ψ} as a function over $\overline{\mathfrak{H} \boldsymbol{\Psi}} \times \mathfrak{H}_{\Psi}$

- $\mathfrak{H}_{\Psi}^{\times}=$conjugate dual of \mathfrak{H}_{Ψ} :
- K^{Ψ} bounded $\Rightarrow X_{\phi}:=K^{\Psi}(\phi, \cdot)$ defines, for each $\phi \in \mathfrak{H}_{\psi}$, an element X_{ϕ} of the conjugate dual of \mathfrak{H}_{ψ}
- Inner product $\left\langle X_{\phi}, X_{\chi}\right\rangle_{\Psi \times}=\left\langle W_{\Psi}^{-1} \phi, S W_{\Psi}^{-1} \chi\right\rangle_{\mathcal{H}}+$ completion \Rightarrow Hilbert space $\mathfrak{H}_{\Psi}^{\times}$
- One has also, for each $X \in \mathfrak{H}_{\Psi}^{\times}$,

$$
X(\phi)=\left\langle X, X_{\phi}\right\rangle=\left\langle X, K^{\Psi}(\phi, \cdot)\right\rangle_{\Psi \times}
$$

which expresses the reproducing property of the kernel K^{Ψ} as a function over $\overline{\mathfrak{H}_{\psi}} \times \mathfrak{H}_{\psi}$

- If S^{-1} is bounded (frame), the three Hilbert spaces coincide as sets, with equivalent norms, since $S, S^{-1} \in G L(\mathcal{H})$
- $\mathfrak{H}_{\Psi}^{\times}=$conjugate dual of \mathfrak{H}_{Ψ} :
- K^{Ψ} bounded $\Rightarrow X_{\phi}:=K^{\Psi}(\phi, \cdot)$ defines, for each $\phi \in \mathfrak{H}_{\psi}$, an element X_{ϕ} of the conjugate dual of \mathfrak{H}_{ψ}
- Inner product $\left\langle X_{\phi}, X_{\chi}\right\rangle_{\Psi \times}=\left\langle W_{\Psi}^{-1} \phi, S W_{\Psi}^{-1} \chi\right\rangle_{\mathcal{H}}+$ completion \Rightarrow Hilbert space $\mathfrak{H}_{\Psi}^{\times}$
- One has also, for each $X \in \mathfrak{H}_{\Psi}^{\times}$,

$$
X(\phi)=\left\langle X, X_{\phi}\right\rangle=\left\langle X, K^{\Psi}(\phi, \cdot)\right\rangle_{\Psi \times}
$$

which expresses the reproducing property of the kernel K^{Ψ} as a function over $\overline{\mathfrak{H}_{\psi}} \times \mathfrak{H}_{\psi}$

- If S^{-1} is bounded (frame), the three Hilbert spaces coincide as sets, with equivalent norms, since $S, S^{-1} \in G L(\mathcal{H})$
- If Ψ is regular, all three spaces $\mathfrak{H}_{\Psi}, \mathfrak{H}_{0}, \mathfrak{H}_{\psi}^{\times}$are reproducing kernel Hilbert spaces, with the same kernel $K(x, y)=\left\langle\psi_{x}, S^{-1} \psi_{y}\right\rangle$
- $\mathfrak{H}_{\Psi}^{\times}=$conjugate dual of \mathfrak{H}_{Ψ} :
- K^{Ψ} bounded $\Rightarrow X_{\phi}:=K^{\Psi}(\phi, \cdot)$ defines, for each $\phi \in \mathfrak{H}_{\psi}$, an element X_{ϕ} of the conjugate dual of \mathfrak{H}_{ψ}
- Inner product $\left\langle X_{\phi}, X_{\chi}\right\rangle_{\Psi \times}=\left\langle W_{\Psi}^{-1} \phi, S W_{\Psi}^{-1} \chi\right\rangle_{\mathcal{H}}+$ completion \Rightarrow Hilbert space $\mathfrak{H}_{\Psi}^{\times}$
- One has also, for each $X \in \mathfrak{H}_{\Psi}^{\times}$,

$$
X(\phi)=\left\langle X, X_{\phi}\right\rangle=\left\langle X, K^{\Psi}(\phi, \cdot)\right\rangle_{\Psi \times}
$$

which expresses the reproducing property of the kernel K^{Ψ} as a function over $\overline{\mathfrak{H}_{\Psi}} \times \mathfrak{H}_{\Psi}$

- If S^{-1} is bounded (frame), the three Hilbert spaces coincide as sets, with equivalent norms, since $S, S^{-1} \in G L(\mathcal{H})$
- If Ψ is regular, all three spaces $\mathfrak{H}_{\Psi}, \mathfrak{H}_{0}, \mathfrak{H}_{\psi}^{\times}$are reproducing kernel Hilbert spaces, with the same kernel $K(x, y)=\left\langle\psi_{x}, S^{-1} \psi_{y}\right\rangle$
- One obtains another Gel'fand triple via the map W_{Ψ} :

$$
\widetilde{\mathfrak{H}}_{\Psi} \subset \widetilde{\mathfrak{H}}_{0} \subset \widetilde{\mathfrak{H}}_{\Psi}^{\times}
$$

where $\widetilde{\mathfrak{H}}_{0}$ is a reproducing kernel subspace of $L^{2}(X, \mathrm{~d} \nu)$

The discrete case : Notation
$X=$ discrete set, ν counting measure \Rightarrow usual discrete setting
$X=$ discrete set, ν counting measure \Rightarrow usual discrete setting

- $L^{2}(X, \mathrm{~d} \nu)$ becomes ℓ^{2}
- Frame $=$ sequence $\Psi=\left(\psi_{n}, n \in \Gamma\right)$
- Analysis operator W_{Ψ} becomes $C: \mathcal{H} \rightarrow \ell^{2}: C(f)=\left\{\left\langle\psi_{n}, f\right\rangle, n \in \Gamma\right\}$
$X=$ discrete set, ν counting measure \Rightarrow usual discrete setting
- $L^{2}(X, \mathrm{~d} \nu)$ becomes ℓ^{2}
- Frame $=$ sequence $\Psi=\left(\psi_{n}, n \in \Gamma\right)$
- Analysis operator W_{Ψ} becomes $C: \mathcal{H} \rightarrow \ell^{2}: C(f)=\left\{\left\langle\psi_{n}, f\right\rangle, n \in \Gamma\right\}$
- Synthesis operator $D: \ell^{2} \rightarrow \mathcal{H}$:

$$
D(c)=\sum_{n} c_{n} \psi_{n}, \quad c=\left(c_{n}\right)
$$

- Then $D=C^{*}, C=D^{*}$, frame operator $S=C^{*} C$ reads

$$
\text { Sf }=\sum_{k}\left\langle\psi_{k}, f\right\rangle \psi_{k}, \quad \text { for all } f \in \mathcal{H}, \quad\langle f, S f\rangle=\sum_{k}\left|\left\langle\psi_{k}, f\right\rangle\right|^{2}
$$

$X=$ discrete set, ν counting measure \Rightarrow usual discrete setting

- $L^{2}(X, \mathrm{~d} \nu)$ becomes ℓ^{2}
- Frame $=$ sequence $\Psi=\left(\psi_{n}, n \in \Gamma\right)$
- Analysis operator W_{Ψ} becomes $C: \mathcal{H} \rightarrow \ell^{2}: C(f)=\left\{\left\langle\psi_{n}, f\right\rangle, n \in \Gamma\right\}$
- Synthesis operator $D: \ell^{2} \rightarrow \mathcal{H}$:

$$
D(c)=\sum_{n} c_{n} \psi_{n}, \quad c=\left(c_{n}\right)
$$

- Then $D=C^{*}, C=D^{*}$, frame operator $S=C^{*} C$ reads

$$
S f=\sum_{k}\left\langle\psi_{k}, f\right\rangle \psi_{k}, \quad \text { for all } f \in \mathcal{H}, \quad\langle f, S f\rangle=\sum_{k}\left|\left\langle\psi_{k}, f\right\rangle\right|^{2}
$$

- For any operator O, denote $R_{O}:=\operatorname{Ran}(O)$

$$
\Rightarrow R_{W} \equiv \operatorname{Ran}\left(W_{\Psi}\right) \text { becomes } R_{C}:=\operatorname{Ran}(C) \subset \ell^{2}, R_{D} \subset \mathcal{H}, R_{S} \subset \mathcal{H}
$$

$X=$ discrete set, ν counting measure \Rightarrow usual discrete setting

- $L^{2}(X, \mathrm{~d} \nu)$ becomes ℓ^{2}
- Frame $=$ sequence $\Psi=\left(\psi_{n}, n \in \Gamma\right)$
- Analysis operator W_{Ψ} becomes $C: \mathcal{H} \rightarrow \ell^{2}: C(f)=\left\{\left\langle\psi_{n}, f\right\rangle, n \in \Gamma\right\}$
- Synthesis operator $D: \ell^{2} \rightarrow \mathcal{H}$:

$$
D(c)=\sum_{n} c_{n} \psi_{n}, \quad c=\left(c_{n}\right)
$$

- Then $D=C^{*}, C=D^{*}$, frame operator $S=C^{*} C$ reads

$$
S f=\sum_{k}\left\langle\psi_{k}, f\right\rangle \psi_{k}, \quad \text { for all } f \in \mathcal{H}, \quad\langle f, S f\rangle=\sum_{k}\left|\left\langle\psi_{k}, f\right\rangle\right|^{2}
$$

- For any operator O, denote $R_{O}:=\operatorname{Ran}(O)$

$$
\Rightarrow R_{W} \equiv \operatorname{Ran}\left(W_{\Psi}\right) \text { becomes } R_{C}:=\operatorname{Ran}(C) \subset \ell^{2}, R_{D} \subset \mathcal{H}, R_{S} \subset \mathcal{H}
$$

- The new inner product on R_{C} reads

$$
\langle c, d\rangle_{\Psi}=\left\langle c, C S^{-1} C^{-1} d\right\rangle_{\ell^{2}}
$$

$X=$ discrete set, ν counting measure \Rightarrow usual discrete setting

- $L^{2}(X, \mathrm{~d} \nu)$ becomes ℓ^{2}
- Frame $=$ sequence $\Psi=\left(\psi_{n}, n \in \Gamma\right)$
- Analysis operator W_{Ψ} becomes $C: \mathcal{H} \rightarrow \ell^{2}: C(f)=\left\{\left\langle\psi_{n}, f\right\rangle, n \in \Gamma\right\}$
- Synthesis operator $D: \ell^{2} \rightarrow \mathcal{H}$:

$$
D(c)=\sum_{n} c_{n} \psi_{n}, \quad c=\left(c_{n}\right)
$$

- Then $D=C^{*}, C=D^{*}$, frame operator $S=C^{*} C$ reads

$$
S f=\sum_{k}\left\langle\psi_{k}, f\right\rangle \psi_{k}, \quad \text { for all } f \in \mathcal{H}, \quad\langle f, S f\rangle=\sum_{k}\left|\left\langle\psi_{k}, f\right\rangle\right|^{2}
$$

- For any operator O, denote $R_{O}:=\operatorname{Ran}(O)$

$$
\Rightarrow R_{W} \equiv \operatorname{Ran}\left(W_{\Psi}\right) \text { becomes } R_{C}:=\operatorname{Ran}(C) \subset \ell^{2}, R_{D} \subset \mathcal{H}, R_{S} \subset \mathcal{H}
$$

- The new inner product on R_{C} reads

$$
\langle c, d\rangle_{\Psi}=\left\langle c, C S^{-1} C^{-1} d\right\rangle_{\ell^{2}}
$$

- Note : same definitions hold if Ψ is only a Bessel sequence

Summary of known results:

Theorem

Let $\Psi=\left(\psi_{k}\right)$ be a frame in \mathcal{H}, with analysis operator $C: \mathcal{H} \rightarrow \ell^{2}$, synthesis operator $D: \ell^{2} \rightarrow \mathcal{H}$ and frame operator $S: \mathcal{H} \rightarrow \mathcal{H}$. Then:
(1) Ψ is total in \mathcal{H}

Summary of known results:

Theorem

Let $\Psi=\left(\psi_{k}\right)$ be a frame in \mathcal{H}, with analysis operator $C: \mathcal{H} \rightarrow \ell^{2}$, synthesis operator $D: \ell^{2} \rightarrow \mathcal{H}$ and frame operator $S: \mathcal{H} \rightarrow \mathcal{H}$. Then:
(1) Ψ is total in \mathcal{H}
(2) R_{C} is a closed subspace of ℓ^{2}. The analysis operator C is a unitary operator from \mathcal{H} onto R_{C}, if R_{C} is equipped with the inner product $\langle c, d\rangle_{\Psi}=\left\langle c, C S^{-1} C^{-1} d\right\rangle_{\ell^{2}}$. This is a Hilbert space denoted by \mathfrak{H}_{ψ}

Discrete frames

Summary of known results:

Theorem

Let $\Psi=\left(\psi_{k}\right)$ be a frame in \mathcal{H}, with analysis operator $C: \mathcal{H} \rightarrow \ell^{2}$, synthesis operator $D: \ell^{2} \rightarrow \mathcal{H}$ and frame operator $S: \mathcal{H} \rightarrow \mathcal{H}$. Then:
(1) Ψ is total in \mathcal{H}
(2) R_{C} is a closed subspace of ℓ^{2}. The analysis operator C is a unitary operator from \mathcal{H} onto R_{C}, if R_{C} is equipped with the inner product $\langle c, d\rangle_{\Psi}=\left\langle c, C S^{-1} C^{-1} d\right\rangle_{\ell^{2}}$. This is a Hilbert space denoted by \mathfrak{H}_{ψ}
(3) The projection P_{ψ} from ℓ^{2} onto R_{C} is given by $P_{\psi}=C S^{-1} D$. It is a matrix operator G, given by $\mathcal{G}_{k, I}=\left\langle\psi_{k}, S^{-1} \psi_{l}\right\rangle$

Discrete frames

Summary of known results:

Theorem

Let $\Psi=\left(\psi_{k}\right)$ be a frame in \mathcal{H}, with analysis operator $C: \mathcal{H} \rightarrow \ell^{2}$, synthesis operator $D: \ell^{2} \rightarrow \mathcal{H}$ and frame operator $S: \mathcal{H} \rightarrow \mathcal{H}$. Then:
(1) Ψ is total in \mathcal{H}
(2) R_{C} is a closed subspace of ℓ^{2}. The analysis operator C is a unitary operator from \mathcal{H} onto R_{C}, if R_{C} is equipped with the inner product $\langle c, d\rangle_{\Psi}=\left\langle c, C S^{-1} C^{-1} d\right\rangle_{\ell^{2}}$. This is a Hilbert space denoted by \mathfrak{H}_{Ψ}
(3) The projection P_{ψ} from ℓ^{2} onto R_{C} is given by $P_{\psi}=C S^{-1} D$. It is a matrix operator G, given by $\mathcal{G}_{k, l}=\left\langle\psi_{k}, S^{-1} \psi_{l}\right\rangle$
(4) \mathfrak{H}_{Ψ} is a reproducing kernel Hilbert space with kernel given by the matrix $\mathcal{G}_{k, I}=\left\langle\psi_{k}, S^{-1} \psi_{l}\right\rangle$

Summary of known results :

Theorem

Let $\Psi=\left(\psi_{k}\right)$ be a frame in \mathcal{H}, with analysis operator $C: \mathcal{H} \rightarrow \ell^{2}$, synthesis operator $D: \ell^{2} \rightarrow \mathcal{H}$ and frame operator $S: \mathcal{H} \rightarrow \mathcal{H}$. Then:
(1) Ψ is total in \mathcal{H}
(2) R_{C} is a closed subspace of ℓ^{2}. The analysis operator C is a unitary operator from \mathcal{H} onto R_{C}, if R_{C} is equipped with the inner product $\langle c, d\rangle_{\psi}=\left\langle c, C S^{-1} C^{-1} d\right\rangle_{\ell^{2}}$. This is a Hilbert space denoted by \mathfrak{H}_{ψ}
(3) The projection P_{ψ} from ℓ^{2} onto R_{C} is given by $P_{\psi}=C S^{-1} D$. It is a matrix operator G, given by $\mathcal{G}_{k, l}=\left\langle\psi_{k}, S^{-1} \psi_{l}\right\rangle$
(4) \mathfrak{H}_{ψ} is a reproducing kernel Hilbert space with kernel given by the matrix $\mathcal{G}_{k, l}=\left\langle\psi_{k}, S^{-1} \psi_{l}\right\rangle$
(5) C is unitary as operator on \mathfrak{H}_{ψ}, and so can be inverted on its range by its adjoint, to get the reconstruction formula

$$
f=S^{-1} D C f=\sum_{k}\left\langle\psi_{k}, f\right\rangle S^{-1} \psi_{k}, \quad \text { for every } f \in \mathcal{H}
$$

Let ψ be an unbounded frame :

$$
0<\sum_{n \in \Gamma}\left|\left\langle\psi_{n}, f\right\rangle\right|^{2} \leqslant M\|f\|^{2}, \forall f \in \mathcal{H}, f \neq 0
$$

$\Leftrightarrow \Psi$ is a total Bessel sequence

Let Ψ be an unbounded frame :

$$
0<\sum_{n \in \Gamma}\left|\left\langle\psi_{n}, f\right\rangle\right|^{2} \leqslant M\|f\|^{2}, \forall f \in \mathcal{H}, f \neq 0
$$

$\Leftrightarrow \Psi$ is a total Bessel sequence
For the standard operators, one has:

Lemma

Let Ψ be an unbounded frame. Then,

- The analysis operator C is injective and bounded
- The synthesis operator D is bounded with dense range

Discrete unbounded frames - 1

Let ψ be an unbounded frame :

$$
0<\sum_{n \in \Gamma}\left|\left\langle\psi_{n}, f\right\rangle\right|^{2} \leqslant M\|f\|^{2}, \forall f \in \mathcal{H}, f \neq 0
$$

$\Leftrightarrow \Psi$ is a total Bessel sequence
For the standard operators, one has:

Lemma

Let Ψ be an unbounded frame. Then,

- The analysis operator C is injective and bounded
- The synthesis operator D is bounded with dense range
- The frame operator $S=C^{*} C$ is bounded, self-adjoint and positive
- S^{-1} is densely defined, self-adjoint and positive.

Let ψ be an unbounded frame :

$$
0<\sum_{n \in \Gamma}\left|\left\langle\psi_{n}, f\right\rangle\right|^{2} \leqslant M\|f\|^{2}, \forall f \in \mathcal{H}, f \neq 0
$$

$\Leftrightarrow \Psi$ is a total Bessel sequence
For the standard operators, one has:

Lemma

Let Ψ be an unbounded frame. Then,

- The analysis operator C is injective and bounded
- The synthesis operator D is bounded with dense range
- The frame operator $S=C^{*} C$ is bounded, self-adjoint and positive
- S^{-1} is densely defined, self-adjoint and positive.
- $R_{C}^{\Psi} \subseteq R_{C} \subseteq \overline{R_{C}}$, with dense inclusions, where $R_{C}^{\Psi}:=C\left(R_{S}\right)$ and $\overline{R_{C}}$ denotes the closure of R_{C} in ℓ^{2}

Theorem

- Define the operator $G_{\psi}: R_{C} \rightarrow R_{C}^{\psi}$ by $G_{\psi}=$ CSC $^{-1}$.

Then G_{ψ} is bounded, positive and symmetric

Discrete unbounded frames - 2

Theorem

- Define the operator $G_{\psi}: R_{C} \rightarrow R_{C}^{\psi}$ by $G_{\psi}=$ CSC $^{-1}$.

Then G_{ψ} is bounded, positive and symmetric

- Define $G_{\Psi}^{-1}: R_{C}^{\Psi} \rightarrow R_{C}$ by $G_{\Psi}^{-1}=C S^{-1} C^{-1}$.

Then G_{ψ}^{-1} is positive and essentially self-adjoint.

Theorem

- Define the operator $G_{\psi}: R_{C} \rightarrow R_{C}^{\psi}$ by $G_{\psi}=$ CSC $^{-1}$.

Then G_{ψ} is bounded, positive and symmetric

- Define $G_{\Psi}^{-1}: R_{C}^{\Psi} \rightarrow R_{C}$ by $G_{\Psi}^{-1}=C S^{-1} C^{-1}$.

Then G_{ψ}^{-1} is positive and essentially self-adjoint.

- G_{ψ} and G_{ψ}^{-1} are bijective and inverse to each other.

Theorem

- Define the operator $G_{\psi}: R_{C} \rightarrow R_{C}^{\psi}$ by $G_{\psi}=$ CSC $^{-1}$.

Then G_{ψ} is bounded, positive and symmetric

- Define $G_{\Psi}^{-1}: R_{C}^{\Psi} \rightarrow R_{C}$ by $G_{\Psi}^{-1}=C S^{-1} C^{-1}$.

Then G_{Ψ}^{-1} is positive and essentially self-adjoint.

- G_{ψ} and G_{ψ}^{-1} are bijective and inverse to each other.
- Let $G=\overline{G_{\psi}}$. Then $G: \overline{R_{C}} \rightarrow R_{G} \subseteq R_{C}$ is bounded, self-adjoint and positive, and $G=\left.C D\right|_{\overline{R_{C}}}$.

Theorem

- Define the operator $G_{\psi}: R_{C} \rightarrow R_{C}^{\psi}$ by $G_{\psi}=C S C^{-1}$.

Then G_{ψ} is bounded, positive and symmetric

- Define $G_{\Psi}^{-1}: R_{C}^{\Psi} \rightarrow R_{C}$ by $G_{\Psi}^{-1}=C S^{-1} C^{-1}$.

Then G_{ψ}^{-1} is positive and essentially self-adjoint.

- G_{ψ} and G_{ψ}^{-1} are bijective and inverse to each other.
- Let $G=\overline{G_{\psi}}$. Then $G: \overline{R_{C}} \rightarrow R_{G} \subseteq R_{C}$ is bounded, self-adjoint and positive, and $G=\left.C D\right|_{\overline{R_{C}}}$.
- Let $G^{-1}=\overline{G_{\Psi}^{-1}}$. Then $G^{-1}: D\left(G^{-1}\right) \subset \overline{R_{C}} \rightarrow \overline{R_{C}}$ is self-adjoint and positive, with domain $\operatorname{Dom}\left(G^{-1}\right)=R_{G}=C R_{D}$.

Theorem

- Define the operator $G_{\psi}: R_{C} \rightarrow R_{C}^{\psi}$ by $G_{\psi}=C S C^{-1}$.

Then G_{ψ} is bounded, positive and symmetric

- Define $G_{\Psi}^{-1}: R_{C}^{\Psi} \rightarrow R_{C}$ by $G_{\Psi}^{-1}=C S^{-1} C^{-1}$.

Then G_{ψ}^{-1} is positive and essentially self-adjoint.

- G_{ψ} and G_{ψ}^{-1} are bijective and inverse to each other.
- Let $G=\overline{G_{\psi}}$. Then $G: \overline{R_{C}} \rightarrow R_{G} \subseteq R_{C}$ is bounded, self-adjoint and positive, and $G=\left.C D\right|_{\overline{R_{C}}}$.
- Let $G^{-1}=\overline{G_{\Psi}^{-1}}$. Then $G^{-1}: D\left(G^{-1}\right) \subset \overline{R_{C}} \rightarrow \overline{R_{C}}$ is self-adjoint and positive, with domain $\operatorname{Dom}\left(G^{-1}\right)=R_{G}=C R_{D}$.

Proof :

- First $G_{\Psi}^{-1}=\left.C^{-1 *} C^{-1}\right|_{R_{C}^{\psi}}$ is symmetric, therefore closable, and positive.

Theorem

- Define the operator $G_{\psi}: R_{C} \rightarrow R_{C}^{\psi}$ by $G_{\psi}=C S C^{-1}$.

Then G_{ψ} is bounded, positive and symmetric

- Define $G_{\Psi}^{-1}: R_{C}^{\Psi} \rightarrow R_{C}$ by $G_{\Psi}^{-1}=C S^{-1} C^{-1}$.

Then G_{Ψ}^{-1} is positive and essentially self-adjoint.

- G_{ψ} and G_{ψ}^{-1} are bijective and inverse to each other.
- Let $G=\overline{G_{\psi}}$. Then $G: \overline{R_{C}} \rightarrow R_{G} \subseteq R_{C}$ is bounded, self-adjoint and positive, and $G=\left.C D\right|_{\overline{R_{C}}}$.
- Let $G^{-1}=\overline{G_{\Psi}^{-1}}$. Then $G^{-1}: D\left(G^{-1}\right) \subset \overline{R_{C}} \rightarrow \overline{R_{C}}$ is self-adjoint and positive, with domain $\operatorname{Dom}\left(G^{-1}\right)=R_{G}=C R_{D}$.

Proof :

- First $G_{\Psi}^{-1}=\left.C^{-1 *} C^{-1}\right|_{R_{C}^{\psi}}$ is symmetric, therefore closable, and positive.
- Then G_{Ψ}^{-1} has defect indices $(0,0)$ and thus is essentially self-adjoint.

Theorem

- Define the operator $G_{\psi}: R_{C} \rightarrow R_{C}^{\psi}$ by $G_{\psi}=$ CSC $^{-1}$.

Then G_{Ψ} is bounded, positive and symmetric

- Define $G_{\Psi}^{-1}: R_{C}^{\Psi} \rightarrow R_{C}$ by $G_{\Psi}^{-1}=C S^{-1} C^{-1}$.

Then G_{Ψ}^{-1} is positive and essentially self-adjoint.

- G_{ψ} and G_{ψ}^{-1} are bijective and inverse to each other.
- Let $G=\overline{G_{\psi}}$. Then $G: \overline{R_{C}} \rightarrow R_{G} \subseteq R_{C}$ is bounded, self-adjoint and positive, and $G=\left.C D\right|_{\overline{R_{C}}}$.
- Let $G^{-1}=\overline{G_{\Psi}^{-1}}$. Then $G^{-1}: D\left(G^{-1}\right) \subset \overline{R_{C}} \rightarrow \overline{R_{C}}$ is self-adjoint and positive, with domain $\operatorname{Dom}\left(G^{-1}\right)=R_{G}=C R_{D}$.

Proof :

- First $G_{\Psi}^{-1}=\left.C^{-1 *} C^{-1}\right|_{R_{C}^{\psi}}$ is symmetric, therefore closable, and positive.
- Then G_{Ψ}^{-1} has defect indices $(0,0)$ and thus is essentially self-adjoint.
- G^{-1} is positive, since its inverse G is bounded and thus the spectrum of G^{-1} is bounded away from 0 .
- Putting everything together, we have the following diagram :

- Putting everything together, we have the following diagram :

- Since G^{-1} is self-adjoint and positive, the inner product

$$
\langle c, d\rangle_{\Psi}=\left\langle c, G^{-1} d\right\rangle_{\ell^{2}}
$$

makes sense on R_{C}^{Ψ}

- Putting everything together, we have the following diagram :

- Since G^{-1} is self-adjoint and positive, the inner product

$$
\langle c, d\rangle_{\Psi}=\left\langle c, G^{-1} d\right\rangle_{\ell^{2}}
$$

makes sense on R_{C}^{Ψ}

- Define the Hilbert space $\mathfrak{H}_{\psi}:=\overline{R_{C}^{\psi}}{ }^{\psi}$ (completion in norm $\|\cdot\|_{\psi}$)

Fundamental result :

Theorem

Let the Hilbert space \mathfrak{H}_{ψ} be defined as above. Then :

Fundamental result :

Theorem

Let the Hilbert space \mathfrak{H}_{Ψ} be defined as above. Then :
(1) \mathfrak{H}_{Ψ} coincides with R_{C} and $C: \mathcal{H} \rightarrow \mathfrak{H}_{\Psi}$ is an isomorphism (unitary map).

Fundamental result :

Theorem

Let the Hilbert space \mathfrak{H}_{Ψ} be defined as above. Then :
(1) \mathfrak{H}_{ψ} coincides with R_{C} and $C: \mathcal{H} \rightarrow \mathfrak{H}_{\Psi}$ is an isomorphism (unitary map).
(2) The norm $\|\cdot\|_{\Psi}$ is equivalent to the graph norm of $G^{-1 / 2}$ and, therefore, $\operatorname{Dom}\left(G^{-1 / 2}\right)=\mathfrak{H}_{\Psi}$.

Fundamental result :

Theorem

Let the Hilbert space \mathfrak{H}_{ψ} be defined as above. Then :
(1) \mathfrak{H}_{ψ} coincides with R_{C} and $C: \mathcal{H} \rightarrow \mathfrak{H}_{\psi}$ is an isomorphism (unitary map).
(2) The norm $\|\cdot\|_{\Psi}$ is equivalent to the graph norm of $G^{-1 / 2}$ and, therefore, $\operatorname{Dom}\left(G^{-1 / 2}\right)=\mathfrak{H}_{\Psi}$.
(3) $C: \mathcal{H} \rightarrow \mathfrak{H}_{\psi}$ can be inverted on \mathfrak{H}_{ψ} by its adjoint $C^{*(\Psi)}=S^{-1} D \upharpoonright_{H_{\psi}}$, which yields the following reconstruction formula, for every $f \in R_{S}$,

$$
f=C^{*(\Psi)} C f=\left(S^{-1} D\right) C f
$$

Fundamental result :

Theorem

Let the Hilbert space \mathfrak{H}_{ψ} be defined as above. Then :
(1) \mathfrak{H}_{ψ} coincides with R_{C} and $C: \mathcal{H} \rightarrow \mathfrak{H}_{\psi}$ is an isomorphism (unitary map).
(2) The norm $\|\cdot\|_{\Psi}$ is equivalent to the graph norm of $G^{-1 / 2}$ and, therefore, $\operatorname{Dom}\left(G^{-1 / 2}\right)=\mathfrak{H}_{\Psi}$.
(3) $C: \mathcal{H} \rightarrow \mathfrak{H}_{\psi}$ can be inverted on \mathfrak{H}_{ψ} by its adjoint $C^{*(\Psi)}=S^{-1} D \upharpoonright_{\mathfrak{H}}^{\psi}$, which yields the following reconstruction formula, for every $f \in R_{S}$,

$$
f=C^{*(\Psi)} C f=\left(S^{-1} D\right) C f
$$

(4) For all $f \in R_{S}$, we also have

$$
f=\sum_{k}\left\langle\psi_{k}, C^{*^{(\psi)}} G^{-1} C f\right\rangle \psi_{k}
$$

Fundamental result :

Theorem

Let the Hilbert space \mathfrak{H}_{ψ} be defined as above. Then :
(1) \mathfrak{H}_{Ψ} coincides with R_{C} and $C: \mathcal{H} \rightarrow \mathfrak{H}_{\Psi}$ is an isomorphism (unitary map).
(2) The norm $\|\cdot\|_{\Psi}$ is equivalent to the graph norm of $G^{-1 / 2}$ and, therefore, $\operatorname{Dom}\left(G^{-1 / 2}\right)=\mathfrak{H}_{\Psi}$.
(3) $C: \mathcal{H} \rightarrow \mathfrak{H}_{\psi}$ can be inverted on \mathfrak{H}_{ψ} by its adjoint $C^{*(\psi)}=S^{-1} D \upharpoonright_{H_{\psi}}$, which yields the following reconstruction formula, for every $f \in R_{S}$,

$$
f=C^{*(\Psi)} C f=\left(S^{-1} D\right) C f
$$

(4) For all $f \in R_{S}$, we also have

$$
f=\sum_{k}\left\langle\psi_{k}, C^{*(\psi)} G^{-1} C f\right\rangle \psi_{k}
$$

(5) For all $f \in R_{D}$, we have the alternative reconstruction formula

$$
f=\sum_{k}\left[G^{-1}\left(\left\langle\psi_{k}, f\right\rangle_{\mathcal{H}}\right)\right] \psi_{k}
$$

- Exactly as in the continuous case, we have the following diagram:

$$
\begin{array}{ccc}
\mathcal{H} & \xrightarrow{C} & \mathfrak{H}_{\Psi}=R_{C} \subset \overline{R_{C}} \subset \ell^{2} \\
\cup & & \cup \\
\operatorname{Dom}\left(S^{-1}\right)=R_{S} & \xrightarrow{C} & R_{C}^{\Psi}
\end{array} \subset \quad \ell^{2}
$$

- Exactly as in the continuous case, we have the following diagram:

$$
\begin{array}{ccc}
\mathcal{H} & \xrightarrow{C} & \mathfrak{H}_{\Psi}=R_{C} \subset \overline{R_{C}} \subset \ell^{2} \\
\cup & & \cup \\
\operatorname{Dom}\left(S^{-1}\right)=R_{S} & \xrightarrow{C} & R_{C}^{\Psi}
\end{array} \subset \quad \ell^{2}
$$

Corollary

$G^{1 / 2}: \overline{R_{C}} \rightarrow \mathfrak{H}_{\Psi}$ is an isomorphism and so is its inverse $G^{-1 / 2}: \mathfrak{H}_{\psi} \rightarrow \overline{R_{C}}$.

- In order to get a nice reproducing kernel, we have to assume Ψ to be regular. Indeed:

Theorem

Let $\left(\psi_{k}\right)$ be a regular unbounded frame. Then \mathfrak{H}_{ψ} is a reproducing kernel Hilbert space, with kernel given by the operator $S^{-1} D$, which is a matrix operator, given by the matrix \mathcal{G}, where

$$
\mathcal{G}_{k, l}=\left\langle\psi_{k}, S^{-1} \psi_{l}\right\rangle=\left\langle\psi_{k}, C^{-1} G^{-1} C \psi_{l}\right\rangle .
$$

Proof : Let $\phi=C f \in \mathfrak{H}_{\psi}$. Then,

$$
\begin{aligned}
\sum_{I} G_{k, I} \phi_{I} & =\sum_{l}\left\langle\psi_{k}, S^{-1} \psi_{I}\right\rangle \phi_{I}=\left\langle\psi_{k}, S^{-1} \sum_{l} \psi_{I} \phi_{l}\right\rangle=\left\langle\psi_{k}, S^{-1} D \phi\right\rangle \\
& =\left(C S^{-1} D \phi\right)_{k}=\left(C S^{-1} D C f\right)_{k}=(C f)_{k}=\phi_{k}
\end{aligned}
$$

Proof: Let $\phi=C f \in \mathfrak{H}_{\psi}$. Then,

$$
\begin{aligned}
\sum_{l} G_{k, I} \phi_{I} & =\sum_{l}\left\langle\psi_{k}, S^{-1} \psi_{l}\right\rangle \phi_{I}=\left\langle\psi_{k}, S^{-1} \sum_{l} \psi_{I} \phi_{l}\right\rangle=\left\langle\psi_{k}, S^{-1} D \phi\right\rangle \\
& =\left(C S^{-1} D \phi\right)_{k}=\left(C S^{-1} D C f\right)_{k}=(C f)_{k}=\phi_{k}
\end{aligned}
$$

- If Ψ is not regular, we have to use a Gel'fand triplet as in the continuous case.

Proof: Let $\phi=C f \in \mathfrak{H}_{\psi}$. Then,

$$
\begin{aligned}
\sum_{l} G_{k, l} \phi_{l} & =\sum_{l}\left\langle\psi_{k}, S^{-1} \psi_{l}\right\rangle \phi_{I}=\left\langle\psi_{k}, S^{-1} \sum_{l} \psi_{I} \phi_{l}\right\rangle=\left\langle\psi_{k}, S^{-1} D \phi\right\rangle \\
& =\left(C S^{-1} D \phi\right)_{k}=\left(C S^{-1} D C f\right)_{k}=(C f)_{k}=\phi_{k} .
\end{aligned}
$$

- If Ψ is not regular, we have to use a Gel'fand triplet as in the continuous case.
- Conclusion : everything works as usual, including reconstruction, provided Ψ is regular, i.e. $\psi_{n} \in \operatorname{Dom}\left(S^{-1}\right), \forall n$
- Let $\left(e_{k}\right)$ be an ONB in \mathcal{H} with index set \mathbb{N}. Let $\psi_{k}=\frac{1}{k} e_{k}$. Then $\left(\psi_{k}\right)$ is an unbounded frame :

$$
0<\sum_{k}\left|\left\langle\psi_{k}, f\right\rangle\right|^{2} \leqslant \sum_{k}\left|\left\langle e_{k}, f\right\rangle\right|^{2}=\|f\|^{2}
$$

The lower bound is 0 , since for $f=e_{p}$, one has $\sum_{k}\left|\left\langle\psi_{k}, f\right\rangle\right|^{2}=\frac{1}{p^{2}}$

- Let $\left(e_{k}\right)$ be an ONB in \mathcal{H} with index set \mathbb{N}. Let $\psi_{k}=\frac{1}{k} e_{k}$. Then $\left(\psi_{k}\right)$ is an unbounded frame :

$$
0<\sum_{k}\left|\left\langle\psi_{k}, f\right\rangle\right|^{2} \leqslant \sum_{k}\left|\left\langle e_{k}, f\right\rangle\right|^{2}=\|f\|^{2}
$$

The lower bound is 0 , since for $f=e_{p}$, one has $\sum_{k}\left|\left\langle\psi_{k}, f\right\rangle\right|^{2}=\frac{1}{p^{2}}$

- Let $\left(e_{k}\right)$ be an ONB in \mathcal{H} with index set \mathbb{N}. Let $\psi_{k}=\frac{1}{k} e_{k}$. Then $\left(\psi_{k}\right)$ is an unbounded frame :

$$
0<\sum_{k}\left|\left\langle\psi_{k}, f\right\rangle\right|^{2} \leqslant \sum_{k}\left|\left\langle e_{k}, f\right\rangle\right|^{2}=\|f\|^{2}
$$

The lower bound is 0 , since for $f=e_{p}$, one has $\sum_{k}\left|\left\langle\psi_{k}, f\right\rangle\right|^{2}=\frac{1}{p^{2}}$

- Let $\phi_{k}=k e_{k}$: the sequence $\left(\phi_{k}\right)$ is dual to $\left(\psi_{k}\right)$, since one has

$$
\sum_{k}\left\langle\psi_{k}, f\right\rangle \phi_{k}=f
$$

This is the unbounded dual frame, living in $\mathfrak{H}_{\Psi}^{\times}$

- In this case, the frame operator is $S=\operatorname{diag}\left(\frac{1}{k}\right)$ and $S^{-1}=\operatorname{diag}(k)$, so that the inner products are, respectively :
- For $\mathfrak{H}_{\psi}:\langle c, d\rangle_{\psi}=\sum_{k} k \overline{c_{k}} d_{k}$
- For \mathfrak{H}_{0} : $\langle c, d\rangle_{0}=\sum_{k} \overline{c_{k}} d_{k}$
- For $\mathfrak{H}_{\psi}^{\times}:\langle c, d\rangle_{\psi}^{\times}=\sum_{k} \frac{1}{k} \overline{c_{k}} d_{k}$

Discrete unbounded frames - Example - 2

- In this case, the frame operator is $S=\operatorname{diag}\left(\frac{1}{k}\right)$ and $S^{-1}=\operatorname{diag}(k)$, so that the inner products are, respectively :
- For $\mathfrak{H}_{\boldsymbol{\psi}}:\langle c, d\rangle_{\psi}=\sum_{k} k \overline{c_{k}} d_{k}$
- For \mathfrak{H}_{0} : $\langle c, d\rangle_{0}=\sum_{k} \bar{c} \bar{c}_{k} d_{k}$
- For $\mathfrak{H}_{\Psi}^{\times}: \quad\langle c, d\rangle_{\Psi}^{\times}=\sum_{k} \frac{1}{k} \overline{c_{k}} d_{k}$
- The sequence used by Gabor in his original IEE-paper, a Gabor system with a Gaussian window, $a=1$ and $b=1$, is exactly such a unbounded frame

Discrete unbounded frames - Example - 2

- In this case, the frame operator is $S=\operatorname{diag}\left(\frac{1}{k}\right)$ and $S^{-1}=\operatorname{diag}(k)$, so that the inner products are, respectively :
- For $\mathfrak{H}_{\Psi}: \quad\langle c, d\rangle_{\Psi}=\sum_{k} k \overline{c_{k}} d_{k}$
- For $\mathfrak{H}_{0}: \quad\langle c, d\rangle_{0}=\sum_{k} \overline{c_{k}} d_{k}$
- For $\mathfrak{H}_{\Psi}^{\times}:\langle c, d\rangle_{\Psi}^{\times}=\sum_{k} \frac{1}{k} \overline{c_{k}} d_{k}$
- The sequence used by Gabor in his original IEE-paper, a Gabor system with a Gaussian window, $a=1$ and $b=1$, is exactly such a unbounded frame
- Generalization :
- $\left(m_{n} e_{n}\right)$, where $m \in \ell^{\infty}$ has a subsequence converging to zero and $m_{n} \neq 0, \forall n$: an unbounded frame, not a frame
- $\left(\frac{1}{m_{n}} e_{n}\right)$: satisfies the lower frame condition, but is not Bessel.

Duality - 1

- In the general case, we have only weak convergence of integrals, in particular, the reconstruction formula

Duality - 1

- In the general case, we have only weak convergence of integrals, in particular, the reconstruction formula
- Here, for sequences, we want more : series expansions, preferably with unconditional convergence

Duality - 1

- In the general case, we have only weak convergence of integrals, in particular, the reconstruction formula
- Here, for sequences, we want more : series expansions, preferably with unconditional convergence
- Series expansions for a frame Φ :

$$
f=\sum\left\langle\phi_{n}, f\right\rangle \psi_{n}=\sum\left\langle\psi_{n}, f\right\rangle \phi_{n}, \forall f \in \mathcal{H}, \text { via some sequence } \psi
$$

Duality - 1

- In the general case, we have only weak convergence of integrals, in particular, the reconstruction formula
- Here, for sequences, we want more : series expansions, preferably with unconditional convergence
- Series expansions for a frame Φ :

$$
f=\sum\left\langle\phi_{n}, f\right\rangle \psi_{n}=\sum\left\langle\psi_{n}, f\right\rangle \phi_{n}, \forall f \in \mathcal{H}, \quad \text { via some sequence } \psi
$$

- In the unbounded case:

Lemma

Let Φ be a Bessel sequence in \mathcal{H}. If there exists Ψ such that (at least) one of the following three conditions hold:
$\left(\mathrm{a}_{1}\right) \sum_{n}\left\langle\psi_{n}, f\right\rangle \phi_{n}=f, \forall f \in \mathcal{H}$
$\left(\mathrm{a}_{2}\right) \sum_{n}\left\langle\phi_{n}, f\right\rangle \psi_{n}=f$ with unconditional convergence of the series for every $f \in \mathcal{H}$
(a3) $\sum_{n}\left\langle\phi_{n}, f\right\rangle \psi_{n}=f, \forall f \in \mathcal{H}$, and $\sum_{n}\left\langle\psi_{n}, f\right\rangle \phi_{n}$ converges for all $f \in \mathcal{H}$ then Φ is an unbounded frame for \mathcal{H} and Ψ satisfies the lower frame condition.

Duality - 2

- This suggests a kind of duality

Duality - 2

- This suggests a kind of duality
- $\Psi=$ frame with bounds (m, M)

$$
\Leftrightarrow \text { canonical dual } \widetilde{\Psi}=\text { frame with bounds }\left(\mathrm{M}^{-1}, \mathrm{~m}^{-1}\right)
$$

Duality - 2

- This suggests a kind of duality
- $\Psi=$ frame with bounds (m, M)

$$
\Leftrightarrow \text { canonical dual } \widetilde{\Psi}=\text { frame with bounds }\left(\mathrm{M}^{-1}, \mathrm{~m}^{-1}\right)
$$

- Unbounded frame $\Psi \simeq \mathrm{m}=0 \Rightarrow S$ bounded, S^{-1} unbounded

Duality - 2

- This suggests a kind of duality
- $\Psi=$ frame with bounds (m, M)

$$
\Leftrightarrow \text { canonical dual } \widetilde{\Psi}=\text { frame with bounds }\left(\mathrm{M}^{-1}, \mathrm{~m}^{-1}\right)
$$

- Unbounded frame $\Psi \simeq \mathrm{m}=0 \Rightarrow S$ bounded, S^{-1} unbounded
- 'Dual' $\widetilde{\Psi}=$ sequence satisfying the lower frame condition $\Rightarrow S$ unbounded, S^{-1} bounded

Duality - 2

- This suggests a kind of duality
- $\Psi=$ frame with bounds (m, M)

$$
\Leftrightarrow \text { canonical dual } \widetilde{\Psi}=\text { frame with bounds }\left(\mathrm{M}^{-1}, \mathrm{~m}^{-1}\right)
$$

- Unbounded frame $\Psi \simeq \mathrm{m}=0 \Rightarrow S$ bounded, S^{-1} unbounded
- 'Dual' $\widetilde{\Psi}=$ sequence satisfying the lower frame condition $\Rightarrow S$ unbounded, S^{-1} bounded
- From exact results, there is duality between
- Unbounded frames = complete Bessel sequences
- Complete sequences satisfying the lower frame condition
\Rightarrow various series expansions, with appropriate convergence
- Generalization: Rank n frames
- A set of vectors $\eta_{x}^{i} \in \mathfrak{H}, \quad i=1,2, \ldots, n<\infty, \quad x \in X$, is a rank n frame $\mathcal{F}=\mathcal{F}\left\{\eta_{x}^{i}, S, n\right\}$ if
(i) for all $x \in X, \quad\left\{\eta_{x}^{i}, i=1,2, \ldots, n\right\}$ is a linearly independent set
(ii) there exists a positive operator $S \in G L(\mathfrak{H})$ such that, with weak convergence,

$$
\sum_{i=1}^{n} \int_{X}\left|\eta_{x}^{i}\right\rangle\left\langle\eta_{x}^{i}\right| \mathrm{d} \nu(x):=\int_{X} \Lambda(x) \mathrm{d} \nu(x)=S
$$

$(\Lambda(x)=$ positive, operator valued function on $X)$

Generalizations

- Generalization: Rank n frames
- A set of vectors $\eta_{x}^{i} \in \mathfrak{H}, \quad i=1,2, \ldots, n<\infty, \quad x \in X$, is a rank n frame $\mathcal{F}=\mathcal{F}\left\{\eta_{x}^{i}, S, n\right\}$ if
(i) for all $x \in X, \quad\left\{\eta_{x}^{i}, i=1,2, \ldots, n\right\}$ is a linearly independent set
(ii) there exists a positive operator $S \in G L(\mathfrak{H})$ such that, with weak convergence,

$$
\sum_{i=1}^{n} \int_{X}\left|\eta_{x}^{i}\right\rangle\left\langle\eta_{x}^{i}\right| \mathrm{d} \nu(x):=\int_{X} \Lambda(x) \mathrm{d} \nu(x)=S
$$

$(\Lambda(x)=$ positive, operator valued function on $X)$
\Rightarrow various notions of equivalence of frames

Generalizations

- Generalization: Rank n frames
- A set of vectors $\eta_{x}^{i} \in \mathfrak{H}, \quad i=1,2, \ldots, n<\infty, \quad x \in X$, is a rank n frame $\mathcal{F}=\mathcal{F}\left\{\eta_{x}^{i}, S, n\right\}$ if
(i) for all $x \in X, \quad\left\{\eta_{x}^{i}, i=1,2, \ldots, n\right\}$ is a linearly independent set
(ii) there exists a positive operator $S \in G L(\mathfrak{H})$ such that, with weak convergence,

$$
\sum_{i=1}^{n} \int_{X}\left|\eta_{x}^{i}\right\rangle\left\langle\eta_{x}^{i}\right| \mathrm{d} \nu(x):=\int_{X} \Lambda(x) \mathrm{d} \nu(x)=S
$$

$(\Lambda(x)=$ positive, operator valued function on $X)$
\Rightarrow various notions of equivalence of frames

- Further generalization: weighted rank n frames frames (g-frames)
- Generalization: Rank n frames
- A set of vectors $\eta_{x}^{i} \in \mathfrak{H}, \quad i=1,2, \ldots, n<\infty, \quad x \in X$, is a rank n frame $\mathcal{F}=\mathcal{F}\left\{\eta_{x}^{i}, S, n\right\}$ if
(i) for all $x \in X, \quad\left\{\eta_{x}^{i}, i=1,2, \ldots, n\right\}$ is a linearly independent set
(ii) there exists a positive operator $S \in G L(\mathfrak{H})$ such that, with weak convergence,

$$
\sum_{i=1}^{n} \int_{X}\left|\eta_{x}^{i}\right\rangle\left\langle\eta_{x}^{i}\right| \mathrm{d} \nu(x):=\int_{X} \Lambda(x) \mathrm{d} \nu(x)=S
$$

$(\Lambda(x)=$ positive, operator valued function on $X)$
\Rightarrow various notions of equivalence of frames

- Further generalization: weighted rank n frames frames (g-frames)
- For $n>1$, connection with fusion frames ?
- Generalization: Rank n frames
- A set of vectors $\eta_{x}^{i} \in \mathfrak{H}, \quad i=1,2, \ldots, n<\infty, \quad x \in X$, is a rank n frame $\mathcal{F}=\mathcal{F}\left\{\eta_{x}^{i}, S, n\right\}$ if
(i) for all $x \in X, \quad\left\{\eta_{x}^{i}, i=1,2, \ldots, n\right\}$ is a linearly independent set
(ii) there exists a positive operator $S \in G L(\mathfrak{H})$ such that, with weak convergence,

$$
\sum_{i=1}^{n} \int_{X}\left|\eta_{x}^{i}\right\rangle\left\langle\eta_{x}^{i}\right| \mathrm{d} \nu(x):=\int_{X} \Lambda(x) \mathrm{d} \nu(x)=S
$$

$(\Lambda(x)=$ positive, operator valued function on $X)$
\Rightarrow various notions of equivalence of frames

- Further generalization: weighted rank n frames frames (g-frames)
- For $n>1$, connection with fusion frames ?
- Connection with frame multipliers ?
- S.T. Ali, J-P. Antoine, and J-P. Gazeau, Square integrability of group representations on homogeneous spaces I. Reproducing triples and frames, Ann. Inst. H. Poincaré 55 (1991) 829-856
- S.T. Ali, J-P. Antoine, and J-P. Gazeau, Continuous frames in Hilbert space, Annals of Physics 222 (1993) 1-37
- S.T. Ali, J-P. Antoine, and J-P. Gazeau, Coherent States, Wavelets and Their Generalizations, Springer-Verlag, New York, Berlin, Heidelberg, 2000, Sec.7.3
- J-P. Antoine, P. Balazs, and D. Stoeva, Unbounded frames, preprint in preparation (work in progress in the framework of MULAC)

