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From coherent states to frames - 1

Three successive stages (ST.Ali - JPA - J-P.Gazeau, 1991-1993)

(1) Coherent states on locally compact group

/ ng) | dv(g) =1 o / gl )P di(g) = 62, Ve € H
G G

e G = locally compact group, with (left) Haar measure dv(g)

o n € 'H, a fixed vector in the Hilbert space H
e ng = U(g)n, U = strongly continuous, square integrable unitary

representation of G on H
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From coherent states to frames - 1

Three successive stages (ST.Ali - JPA - J-P.Gazeau, 1991-1993)
(1) Coherent states on locally compact group

/ ng) | dv(g) =1 o / gl )P di(g) = 62, Ve € H
G G

e G = locally compact group, with (left) Haar measure dv(g)
o n € 'H, a fixed vector in the Hilbert space H
e ng = U(g)n, U = strongly continuous, square integrable unitary
representation of G on H
(2) Coherent states on homogeneous space
o H= closed subgroup of G, X = G/H, v= invariant measure on X,

Borel section o : G/H — G,
e U = unitary representation of G, square integrable modulo the
subgroup H and the Borel section o, i.e.

/ |77<7(>< na(x | dV(X) 0’7 no(x - (U(X))
converges weakly to a bounded, positive, invertible operator S,

- / (ool )F dv(x) = (6,5,6), Vo €M
X
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From coherent states to frames - 2

(3) Reproducing triples : group structure is not needed !
Reproducing triple {$),A, S} :
e measure space (X, v)
e bounded, positive, invertible operator S, acting on a Hilbert space H
o v-measurable function A from X into the bounded positive operators
on H, s.t. (weakly)

/X A(x) du(x) = S
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Reproducing triple {$),A, S} :
e measure space (X, v)
e bounded, positive, invertible operator S, acting on a Hilbert space H
o v-measurable function A from X into the bounded positive operators
on H, s.t. (weakly)

/X A(x) du(x) = S

= overcomplete family of (generalized) coherent states
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From coherent states to frames - 2

(3) Reproducing triples : group structure is not needed !
Reproducing triple {$),A, S} :
e measure space (X, v)

e bounded, positive, invertible operator S, acting on a Hilbert space H
o v-measurable function A from X into the bounded positive operators

on H, s.t. (weakly)
/X A(x) du(x) = S

= overcomplete family of (generalized) coherent states

o {H,A\, S} = frame if
e rank A(x) is constant and finite
o S7'is a bounded operator
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Frames and unbounded frames - 1

@ Coherent states
o X = locally compact space with measure v
o W := {4y, x € X} CH a family of vectors indexed by points of X
o W is a set of coherent states (CS) if

/(f,@)(%,f’) dv(x) = (f, Sf'), YV, f € H
X

where S is a bounded, positive, self-adjoint, invertible operator on H
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Frames and unbounded frames - 1

@ Coherent states
o X = locally compact space with measure v
o W := {4y, x € X} CH a family of vectors indexed by points of X
o W is a set of coherent states (CS) if

/(f,%)(%,f’) dv(x) = (f, Sf'), YV, f € H
X

where S is a bounded, positive, self-adjoint, invertible operator on H

@ If S™!is bounded, usual frame condition : {%x} C H is a frame if there
exist constants m > 0 and M < oo such that

m|\f|\2</|<wx,f>|2 du(x) < M[IFI2.VF € H
X

= (f.SF) = / (e A di(x)

S= frame operator, Sp(S) C [m, M]
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Frames and unbounded frames - 1

@ Coherent states
o X = locally compact space with measure v
o W := {4y, x € X} CH a family of vectors indexed by points of X
o W is a set of coherent states (CS) if

/(f,%)(%,f’) dv(x) = (f, Sf'), YV, f € H
X

where S is a bounded, positive, self-adjoint, invertible operator on H

@ If S™!is bounded, usual frame condition : {%x} C H is a frame if there
exist constants m > 0 and M < oo such that

m|\f|\2</|<wx,f>|2 du(x) < M[IFI2.VF € H
X

= (f,5F) = / (W, A di(x)

S= frame operator, Sp(S) C [m, M]

@ If S is unbounded, with dense domain Dom(S™1), so that we can write
0< / [(tx, £)2 dv(x) < M|,V f € H,
X

then W is called an unbounded frame
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Program

e How can one reconstruct the signal?
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Frames and unbounded frames - 2

Program :
e How can one reconstruct the signal?

o Formalism known in the continuous case (via the Coherent states
approach), will be particularized to discrete setting
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Frames and unbounded frames - 2

Program :
e How can one reconstruct the signal?

o Formalism known in the continuous case (via the Coherent states
approach), will be particularized to discrete setting

o May be formulated in a Gel'fand triplet ® C § C ®*, in which ® is
essentially the domain of S~ with graph norm
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General frames - 1

Properties of frames (S~! bounded)
e W is total in H

Jean-Pierre Antoine

«4Or «4F» «=)» «=)» = Q>



General frames - 1

Properties of frames (S~ bounded)
o Vs total in H
o Define the CS map Wiy : H — L*(X, dv) by
(W f)(x) = (¢« F), FEH
Then WgWy = S, since || Wa |72« = IISY?FI13, = (F, SF)
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General frames - 1

Properties of frames (S~ bounded)
e WV is total in H
o Define the CS map Wi : H — L*(X, dv) by
(W f)(x) = (Y, ), FEH
Then WgWy = S, since || Wa |72« = IISY?FI13, = (F, SF)

o Since S > 0, Wy is injective and W, * : Ran(W) :— H is
well-defined
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General frames - 1

Properties of frames (S~ bounded)
e W is total in H
o Define the CS map Wi : H — L*(X, dv) by
(W f)(x) = (¢x, f), FEH
Then WgWy = S, since || Wa |72« = IISY?FI13, = (F, SF)
o Since S > 0, Wy is injective and W, * : Ran(W) :— H is
well-defined

o Ran(W4) is a closed subspace $y of L*(X, dv), which is complete
for the new scalar product

(6,0 )w == (¢, W ST W tg' Vi2(x), ¢, ¢ € Ran(Wa)
and Wy : ' H — $v is unitary:
(b, ¢ Vv (Waf, Waf'y = (Waf, W ST We ' Warf') 20
(Wof, Wy ST ) 12(x
= (F, WgWy S )y
(F, f)n
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General frames - 2

@ The projection from L2(X, dv) onto Hy is Py = Wy Wy™ and it is
an integral operator with kernel K(x,y) = (1x, S~1¢,)
i.e., Hy is a reproducing kernel Hilbert space
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General frames - 2

@ The projection from L2(X, dv) onto Hy is Py = Wy Wy™ and it is
an integral operator with kernel K(x,y) = (1x, S~1¢,)
i.e., Hy is a reproducing kernel Hilbert space

= The elements of Hy are genuine functions, not equivalence classes
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General frames - 2

@ The projection from L2(X, dv) onto Hy is Py = Wy Wy™ and it is
an integral operator with kernel K(x,y) = (1x, S~1¢,)
i.e., Hy is a reproducing kernel Hilbert space

= The elements of Hy are genuine functions, not equivalence classes

@ All this can also be expressed in terms of the evaluation map
E(x): f— f(x)
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General frames - 2

@ The projection from L2(X, dv) onto Hy is Py = Wy Wy™ and it is
an integral operator with kernel K(x,y) = (1x, S~1¢,)
i.e., Hy is a reproducing kernel Hilbert space

= The elements of Hy are genuine functions, not equivalence classes

@ All this can also be expressed in terms of the evaluation map
E(x): f— f(x)

@ Inverting Wy on its range by the adjoint operator, one gets a
reconstruction formula

f=Wolo = Woo = /X 6(x) S~V dv(x), 6 € Hu
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The case S~ unbounded
o W is total in H
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Unbounded frames : the general case - 1

The case S~ unbounded
o Vs total in H

o Write Ry := Ran(W4) and Rs := Ran(S) = Dom(S57!)
Then one has :

H M Rwc  RwCILA(X, dv)
@] U
Dom(S~1) =Rs ™  Wy(Rs) C L2(X, dv)

where Ry = closure of Ry in L*(X, dv)
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Unbounded frames : the general case - 1

The case S~ unbounded
o Vs total in H

o Write Ry := Ran(W4) and Rs := Ran(S) = Dom(S57!)
Then one has :
H M Rwc  RwCILA(X, dv)
U U

Dom(S~1) =Rs ™  Wy(Rs) C L2(X, dv)

where Ry = closure of Ry in L*(X, dv)

o Define the Hilbert space Hv := WW(RS)W
(completion in norm || - [|w)

Then the map W, restricted to the dense domain Dom(S™') = Rs,
is an isometry into Hy :

(Waf, Wyf')yy = (f,f)n, Vf,g € Rs (same calculation as before)
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Unbounded frames : the general case - 1

The case S~ unbounded
o Vs total in H

o Write Ry := Ran(W4) and Rs := Ran(S) = Dom(S57!)
Then one has :
Wy

H AN Rw C  Rw C L3(X, dv)
) u
Dom(S~1) =Rs ™  Wy(Rs) C L2(X, dv)
where Ry = closure of Ry in L*(X, dv)

o Define the Hilbert space Hv := WW(RS)W
(completion in norm || - [|w)

Then the map W, restricted to the dense domain Dom(S™') = Rs,
is an isometry into Hy :

(Waf, Wyf')yy = (f,f)n, Vf,g € Rs (same calculation as before)

e Thus Wy extends by continuity to a unitary map from H onto
— v
Hv := W (Rs)
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Unbounded frames : the general case - 2

@ Thus we get Hy = Ry, which therefore is a subspace (though not
necessarily closed) of L2(X, dv):

Y Hv = Rw C Rw C L3(X, dv)
U U

Dom(S_l) =Rs — Ww(Rs) C L2()<7 dV)
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Unbounded frames : the general case - 2

@ Thus we get Hy = Ry, which therefore is a subspace (though not
necessarily closed) of L2(X, dv):

H W, 6y = Rw C Ry C LA(X, dv)

U U

Dom(S~1) =Rs 2%  Wy(Rs) C L2(X, dv)

o Syti= Wy STEW ! = [Wy S W, ']t is a positive self-adjoint
operator, with domain dense in Ry, and the norm ||-||,, is equivalent

to the graph norm of 5\;1/2, so that

Dom(Sy %) = $v = Rw C Rw C L*(X, dv)
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Unbounded frames : the general case - 2

@ Thus we get Hy = Ry, which therefore is a subspace (though not
necessarily closed) of L2(X, dv):

H W, 6y = Rw C Ry C LA(X, dv)

U U

Dom(S~1) =Rs 2%  Wy(Rs) C L2(X, dv)

o Syti= Wy STEW ! = [Wy S W, ']t is a positive self-adjoint
operator, with domain dense in Ry, and the norm ||-||,, is equivalent

to the graph norm of 5\;1/2, so that

Dom(Sy %) = $v = Rw C Rw C L*(X, dv)

° Wujl : 9y — H is unitary, hence it is the adjoint of Wy : H — $Hy
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Unbounded frames : the general case - 2

@ Thus we get Hy = Ry, which therefore is a subspace (though not
necessarily closed) of L2(X, dv):

H W, 6y = Rw C Ry C LA(X, dv)

U U

Dom(S~1) =Rs 2%  Wy(Rs) C L2(X, dv)

o Syti= Wy STEW ! = [Wy S W, ']t is a positive self-adjoint
operator, with domain dense in Ry, and the norm ||-||,, is equivalent

to the graph norm of 5\;1/2, so that

Dom(Sy %) = $v = Rw C Rw C L*(X, dv)

° Wujl : Hv — H is unitary, hence it is the adjoint of Wy : H — $Hy
= Sy and S, are unitary images of S and S, thus

[Swllw = (ISl
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Unbounded frames : the general case - 3

@ Definition : the unbounded frame W = {4, x € X} is regular if
1 € Dom(S7h), Vx € X
= the reproducing kernel K(x,y) = (1x, S™'1),) is a bona fide function on
X x X
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Unbounded frames : the general case - 3

@ Definition : the unbounded frame W = {4, x € X} is regular if
1 € Dom(S71), Vx € X
= the reproducing kernel K(x,y) = (1x, S™*4,) is a bona fide function on
X x X

@ If W is regular, we get the same reconstruction formula

f=Wolo= Woo = /X () SV by dvl(x), & € By
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Unbounded frames : the general case - 3

@ Definition : the unbounded frame W = {4, x € X} is regular if
1 € Dom(S71), Vx € X
= the reproducing kernel K(x,y) = (1x, S™*4,) is a bona fide function on
X x X

@ If W is regular, we get the same reconstruction formula
f= W‘;lgi) = Wy = / o(x) st ¥y dv(x), ¢ € Hy
X

@ If W is not regular, use language of distributions :

K(x, y) defines a bounded sesquilinear form over $y
@ Best formulation : in terms of a Gel'fand triplet
Hv C H C Hy
where

o 9o := Huv = Rw = closure of Hy in L*(X, dv)
o $, = conjugate dual of Hy
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Unbounded frames : the general case - 3

@ Definition : the unbounded frame W = {4, x € X} is regular if
1 € Dom(S71), Vx € X
= the reproducing kernel K(x,y) = (1x, S™*4,) is a bona fide function on
X x X

@ If W is regular, we get the same reconstruction formula
f= W‘;lgi) = Wy = / o(x) st ¥y dv(x), ¢ € Hy
X

@ If W is not regular, use language of distributions :

K(x, y) defines a bounded sesquilinear form over $y

@ Best formulation : in terms of a Gel'fand triplet

Hv C H C Hy
where
o 9o := Huv = Rw = closure of Hy in L*(X, dv)
o $, = conjugate dual of Hy
= §), carries the unbounded version of the dual frame
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o Even if W is not regular, one has

Unbounded frames : Formulation in terms of a _
JI 0Kty dvto) dty) = (W60, SWG )
X
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Unbounded frames : Formulation in terms of a Gel'fand triplet - 1

o Even if W is not regular, one has
J[[ 30K eyxty) dux) dvln) = (W60, SWe i
XxX

o Since Wy is an isometry and S is bounded, this relation defines a
bounded sesquilinear form over Hy :

KY (¢, x) = (Wy ¢, SWy " x)ne
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Unbounded frames : Formulation in terms of a Gel'fand triplet - 1

o Even if W is not regular, one has
J[[ 30K eyxty) dux) dvln) = (W60, SWe i
XxX

o Since Wy is an isometry and S is bounded, this relation defines a
bounded sesquilinear form over Hy :

KY (¢, x) = (Wy ¢, SWy " x)ne

o Let $;; = completion of Hy in the norm given by K"
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Unbounded frames : Formulation in terms of a Gel'fand triplet - 1

o Even if W is not regular, one has
J[[ 30K eyxty) dux) dvln) = (W60, SWe i
XxX

o Since Wy is an isometry and S is bounded, this relation defines a
bounded sesquilinear form over Hy :

KY(,x) = (W ' ¢, SWy  x)
o Let $;; = completion of Hy in the norm given by K"
o Reproducing property of K(x,y) implies

[ 00 ) = (6.0 2, = K*(6.3)
Thus, with continuous and dense range embeddings,

Hv C Ho C Hy
where
. $y = Rw = Hilbert space for the norm ||-||y, = (-, Wy S~} WJI->1/2
. $ = Hy is the closure of Hy in L2(X, dv)

. $y = completion of o in the norm ||-[|3 = (-, Wiy S Wy 1-)1/2
= conjugate dual of $y
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Unbounded frames : the continuous case - 5

@ §, = conjugate dual of Hy :
o KV bounded = X, := KY(¢,-) defines, for each ¢ € $y, an element
Xy of the conjugate dual of Hy
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Unbounded frames : the continuous case - 5

@ §, = conjugate dual of Hy :
o KV bounded = X, := KY(¢,-) defines, for each ¢ € $y, an element
Xy of the conjugate dual of Hy
o Inner product (Xy, Xy )wx = (Wy '¢, SWy ' x)# + completion
= Hilbert space 9
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Unbounded frames : the continuous case - 5

@ §, = conjugate dual of Hy :
o KV bounded = X, := KY(¢,-) defines, for each ¢ € $y, an element
Xy of the conjugate dual of Hy
o Inner product (Xy, Xy )wx = (Wy '¢, SWy ' x)# + completion
= Hilbert space 9

@ One has also, for each X € 9,

X(9) = (X, Xs) = (X, K¥(6,))w

which expresses the reproducing property of the kernel KV as a function
over Hy X Hv
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Unbounded frames : the continuous case - 5

@ §, = conjugate dual of Hy :
o KV bounded = X, := KY(¢,-) defines, for each ¢ € $y, an element
Xy of the conjugate dual of Hy
o Inner product (Xy, Xy )wx = (Wy '¢, SWy ' x)# + completion
= Hilbert space 9

@ One has also, for each X € 9,
X(¢) = <X7X¢> = <X7 Kw(d)v ')>‘UX

which expresses the reproducing property of the kernel KV as a function
over Hy X Hv

@ If S71 is bounded (frame), the three Hilbert spaces coincide as sets, with
equivalent norms, since S, 5™ € GL(H)
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Unbounded frames : the continuous case - 5

@ §, = conjugate dual of Hy :
o KV bounded = X, := KY(¢,-) defines, for each ¢ € $y, an element
Xy of the conjugate dual of Hy
o Inner product (Xy, Xy )wx = (Wy '¢, SWy ' x)# + completion
= Hilbert space 9

@ One has also, for each X € 9,

X(9) = (X, Xs) = (X, K¥(6,))w

which expresses the reproducing property of the kernel KV as a function
over Hy X Hv

@ If S71 is bounded (frame), the three Hilbert spaces coincide as sets, with
equivalent norms, since S, 5™ € GL(H)

@ If W is regular, all three spaces ﬁw,ﬁo,f)ux, are reproducing kernel Hilbert

spaces, with the same kernel K(x,y) = (1x, S~ ¢,)
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Unbounded frames : the continuous case - 5

@ §, = conjugate dual of Hy :
o KV bounded = X, := KY(¢,-) defines, for each ¢ € $y, an element
Xy of the conjugate dual of Hy
o Inner product (Xy, Xy )wx = (Wy '¢, SWy ' x)# + completion
= Hilbert space 9

@ One has also, for each X € 9,

X(9) = (X, Xs) = (X, K¥(6,))w

which expresses the reproducing property of the kernel KY as a function
over Hy X Hv

@ If S71 is bounded (frame), the three Hilbert spaces coincide as sets, with
equivalent norms, since S, 5™ € GL(H)

@ If W is regular, all three spaces f)w,ﬁo,f3$ are reproducing kernel Hilbert
spaces, with the same kernel K(x,y) = (¢, S™'4,)

@ One obtains another Gel'fand triple via the map Wy :

Hv C H C Hy

where $ is a reproducing kernel subspace of L3(X, dv)
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The discrete case : Notation

X = discrete set, v counting measure =- usual discrete setting

Jean-Pierre Antoine

=] (=)
Unbounded frames 13/26



The discrete case : Notation

X = discrete set, v counting measure =- usual discrete setting

o L*(X, dv) becomes ¢?
o Frame = sequence W = (¢, n €T)
o Analysis operator Wi becomes C : H — 2 : C(f) = {{sn, ), n € T}
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The discrete case : Notation

X = discrete set, v counting measure =- usual discrete setting

o (X, dv) becomes >
o Frame = sequence W = (¢, n €T)
Analysis operator Wy becomes C : H — % : C(f) = {{¢n, f),n €T}

Synthesis operator D : /> — H :

D(c) = Z cnthn, €= (cn)

n

Then D = C*, C = D*, frame operator S = C*C reads

SF=> (i, f) v, forall fe™M, (fSF)=> | )

k k
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The discrete case : Notation

X = discrete set, v counting measure =- usual discrete setting

o [*(X, dv) becomes ¢?
o Frame = sequence W = (¢, n €T)
Analysis operator Wy becomes C : H — % : C(f) = {{¢n, f),n €T}

Synthesis operator D : /> — H :

D(c) = chwn, c=(cn)

n

Then D = C*, C = D*, frame operator S = C*C reads

SF=> (i, f) v, forall fe™M, (fSF)=> | )
K k
For any operator O, denote Ro := Ran(O)

= Rw = Ran(W4) becomes R¢ := Ran(C) C £>, Rp C H, Rs C H
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The discrete case : Notation

X = discrete set, v counting measure =- usual discrete setting

o [*(X, dv) becomes ¢?
o Frame = sequence W = (¢, n €T)
Analysis operator Wy becomes C : H — % : C(f) = {{¢n, f),n €T}

Synthesis operator D : /> — H :

D(c) = chwn, c=(cn)

n

Then D = C*, C = D*, frame operator S = C*C reads

SF=> (i, f) v, forall fe™M, (fSF)=> | )
K k
For any operator O, denote Ro := Ran(O)

= Rw = Ran(W4) becomes R¢ := Ran(C) C £>, Rp C H, Rs C H

e The new inner product on Rc¢ reads

(c,dyw = (c,CS'C'd)pe
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The discrete case : Notation

X = discrete set, v counting measure =- usual discrete setting

o [*(X, dv) becomes ¢?
o Frame = sequence W = (¢, n €T)
Analysis operator Wy becomes C : H — % : C(f) = {{¢n, f),n €T}

Synthesis operator D : /> — H :

D(c) = chwn, c=(cn)

n

Then D = C*, C = D*, frame operator S = C*C reads

SF=> (i, f) v, forall fe™M, (fSF)=> | )
K k
For any operator O, denote Ro := Ran(O)

= Rw = Ran(W4) becomes R¢ := Ran(C) C £>, Rp C H, Rs C H

e The new inner product on Rc¢ reads
(c,dyw = (c,CS'C'd)pe
o Note : same definitions hold if W is only a Bessel sequence
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Discrete frames

Summary of known results :

Let W = (v)x) be a frame in 'H, with analysis operator C : H — (2,
synthesis operator D : /> — H and frame operator S : H — H. Then:

(1) W s total in H
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Discrete frames

Summary of known results :

Let W = (v)x) be a frame in 'H, with analysis operator C : H — (2,
synthesis operator D : /> — H and frame operator S : H — H. Then:

(1) W s total in H

(2) Rc is a closed subspace of £2. The analysis operator C is a unitary
operator from ‘H onto Rc¢, if Rc is equipped with the inner product
(c,d)w = (c, CS'C7d) . This is a Hilbert space denoted by $Hy
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Discrete frames

Summary of known results :

Theorem

Let W = (v)x) be a frame in 'H, with analysis operator C : H — (2,
synthesis operator D : /> — H and frame operator S : H — H. Then:

(1) W s total in H
(2) Rc is a closed subspace of £2. The analysis operator C is a unitary

operator from ‘H onto Rc¢, if Rc is equipped with the inner product
(c,d)w = (c, CS'C7d) . This is a Hilbert space denoted by $Hy

(3) The projection Py from £* onto Rc is given by Py = CS™'D. It is a
matrix operator G, given by Gx.; = (¢x, S~ )
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Discrete frames

Summary of known results :

Let W = (v)x) be a frame in 'H, with analysis operator C : H — (2,
synthesis operator D : /> — H and frame operator S : H — H. Then:

(1) W s total in H

(2) Rc is a closed subspace of £2. The analysis operator C is a unitary
operator from ‘H onto Rc¢, if Rc is equipped with the inner product
(c,d)w = (c, CS'C7d) . This is a Hilbert space denoted by $Hy

(3) The projection Py from £* onto Rc is given by Py = CS™'D. It is a
matrix operator G, given by Gx.; = (¢x, S~ )

(4) $v is a reproducing kernel Hilbert space with kernel given by the matrix

G = (i, S™M1)
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Discrete frames

Summary of known results :

Let W = (v)x) be a frame in 'H, with analysis operator C : H — (2,
synthesis operator D : /> — H and frame operator S : H — H. Then:

(1) W s total in H

(2) Rc is a closed subspace of £2. The analysis operator C is a unitary
operator from ‘H onto Rc¢, if Rc is equipped with the inner product
(c,d)w = (c, CS'C7d) . This is a Hilbert space denoted by $Hy

(3) The projection Py from £* onto Rc is given by Py = CS™'D. It is a
matrix operator G, given by Gx.; = (¢x, S~ )

(4) $v is a reproducing kernel Hilbert space with kernel given by the matrix

G = (i, S™M1)

(5) C is unitary as operator on $w, and so can be inverted on its range by its
adjoint, to get the reconstruction formula

f=S"'DCf = (Px, f)S "1k, forevery feH
k
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Discrete unbounded frames - 1

Let W be an unbounded frame :

0< Y (W AP SM|FI? VFeEH, f£0
ner

< W is a total Bessel sequence
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Let W be an unbounded frame :

0< Y [(Wn AP <SMFIPVFeEH, f#0
nel

< W is a total Bessel sequence

For the standard operators, one has :

Let W be an unbounded frame. Then,
o The analysis operator C is injective and bounded

o The synthesis operator D is bounded with dense range
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Let W be an unbounded frame :

0< Y [(Wn AP <SMFIPVFeEH, f#0
nel

< W is a total Bessel sequence

For the standard operators, one has :

Let W be an unbounded frame. Then,
@ The analysis operator C is injective and bounded
o The synthesis operator D is bounded with dense range
@ The frame operator S = C*C is bounded, self-adjoint and positive

o S~ is densely defined, self-adjoint and positive.
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Discrete unbounded frames - 1

Let W be an unbounded frame :

0< Y [(Wn AP <SMFIPVFeEH, f#0

nel

< W is a total Bessel sequence

For the standard operators, one has :

Let W be an unbounded frame. Then,
@ The analysis operator C is injective and bounded
o The synthesis operator D is bounded with dense range
@ The frame operator S = C*C is bounded, self-adjoint and positive

o S~ is densely defined, self-adjoint and positive.

° Rg C Rc C Rc, with dense inclusions, where Rg := C(Rs) and R¢ denotes the
closure of R¢ in 2
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Discrete unbounded frames - 2

o Define the operator Gy : Rc — RY by Gy = CSC™L.

Then Gy is bounded, positive and symmetric
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Discrete unbounded frames - 2

o Define the operator Gy : Rc — RY by Gy = CSC™L.
Then Gy is bounded, positive and symmetric
o Define G, ' : R¢ — Rc by G,' = CS™'C™.

Then G, ! js positive and essentially self-adjoint.
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o Gy and G, L are bijective and inverse to each other.
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Then Gy is bounded, positive and symmetric

o Define Gujl 3 R‘CU — Rc¢ by GJI =CcSic L.
Then G, ! js positive and essentially self-adjoint.

o Gy and Gujl are bijective and inverse to each other.

o Let G = Gy. Then G : Rc — Rc C Rc is bounded, self-adjoint and
positive, and G = CD|g_.
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Discrete unbounded frames - 2

o Define the operator Gy : Rc — RY by Gy = CSC™L.
Then Gy is bounded, positive and symmetric

o Define Gujl 3 R‘CU — Rc¢ by GJI =CcSic L.
Then G, ! js positive and essentially self-adjoint.

o Gy and Gujl are bijective and inverse to each other.

o Let G = Gy. Then G : Rc — Rc C Rc is bounded, self-adjoint and
positive, and G = CD|g_.

o Let G™' = G,'. Then G™*: D(G™') C Rc — Rc is self-adjoint and
positive, with domain Dom(G ™) = Rg = CRp.
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Discrete unbounded frames - 2

Define the operator Gy : Rc — R¢ by Gy = CSC™L.

Then Gy is bounded, positive and symmetric

Define Gujl 3 R‘CU — Rc¢ by GJI =CcSic L.

Then G, ! js positive and essentially self-adjoint.

Gy and Gy, L are bijective and inverse to each other.

Let G = Gy. Then G : Rc — Rc C Rc is bounded, self-adjoint and
positive, and G = CD|g_.

Let G = G,*. Then G™': D(G™') C Rc — Rc is self-adjoint and
positive, with domain Dom(G ™) = Rg = CRp.

Proof :

e First G, ! = C’l*C’1|Rg is symmetric, therefore closable, and
positive.
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Define the operator Gy : Rc — R¢ by Gy = CSC™L.

Then Gy is bounded, positive and symmetric

Define Gujl 3 R‘CU — Rc¢ by GJI =CcSic L.

Then G, ! js positive and essentially self-adjoint.

Gy and Gy, L are bijective and inverse to each other.

Let G = Gy. Then G : Rc — Rc C Rc is bounded, self-adjoint and
positive, and G = CD|g_.

Let G = G,*. Then G™': D(G™') C Rc — Rc is self-adjoint and
positive, with domain Dom(G ™) = Rg = CRp.

Proof :

e First G, ! = C’l*C’1|Rg is symmetric, therefore closable, and
positive.
o Then G, ' has defect indices (0,0) and thus is essentially self-adjoint.
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Discrete unbounded frames - 2

Define the operator Gy : Rc — R¢ by Gy = CSC™L.

Then Gy is bounded, positive and symmetric

Define Gujl 3 R‘C" — Rc¢ by GJI =CcSic L.

Then G, ! js positive and essentially self-adjoint.

Gy and Gy, L are bijective and inverse to each other.

Let G = Gy. Then G : Rc — Rc C Rc is bounded, self-adjoint and
positive, and G = CD|g_.

Let G = G,*. Then G™': D(G™') C Rc — Rc is self-adjoint and
positive, with domain Dom(G ™) = Rg = CRp.

Proof :
e First G, ! = C’l*C’1|Rg is symmetric, therefore closable, and
positive.
o Then G, ' has defect indices (0,0) and thus is essentially self-adjoint.
o G7lis positive, since its inverse G is bounded and thus the spectrum
of G7! is bounded away from 0.
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Discrete unbounded frames - 3

@ Putting everything together, we have the following diagram :

C -
H = > Rc CRcC#?
C—l
sl st b Go || G
C
H D Dom(S71)=Rs < - REC?
C—l
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@ Putting everything together, we have the following diagram :

C -
H = > Rc CRcC#?
C—l
sl st b Go || G
C
H D Dom(S71)=Rs < - REC?
C—l

@ Since G~ ! is self-adjoint and positive, the inner product
<C, d)w = <C, G_1d>g2

makes sense on RY
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Discrete unbounded frames - 3

@ Putting everything together, we have the following diagram :

C -
H = > Rc CRcC#?
C—l
sl st b Go || G
C
H D Dom(S71)=Rs < - REC?
C—l

@ Since G~ ! is self-adjoint and positive, the inner product
<C, d)w = <C, G_1d>g2

makes sense on RY

—
@ Define the Hilbert space Hiy := RY (completion in norm | - ||w)
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Discrete unbounded frames - 4

Fundamental result :

Let the Hilbert space $w be defined as above. Then :
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Discrete unbounded frames - 4

Fundamental result :

Let the Hilbert space $w be defined as above. Then :

(1) $Hw coincides with Rc and C : H — $w is an isomorphism (unitary map).
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Discrete unbounded frames - 4

Fundamental result :

Let the Hilbert space $w be defined as above. Then :

(1) $Hw coincides with Rc and C : H — $v is an isomorphism (unitary map).

—1/2

(2) The norm ||.||, is equivalent to the graph norm of G and, therefore,

Dom(G~?) = §Hy.
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Discrete unbounded frames - 4

Fundamental result :

Let the Hilbert space $w be defined as above. Then :

(1) $Hw coincides with Rc and C : H — $v is an isomorphism (unitary map).

(2) The norm ||.|| is equivalent to the graph norm of G~'/? and, therefore,
Dom(G~?) = §Hy.

(3) C:H — $Hu can be inverted on $Hy by its adjoint C*¥) = S71DI§y,
which yields the following reconstruction formula, for every f € Rs,

f=cWcr = (5*10) Cf
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Discrete unbounded frames - 4

Fundamental result :

Theorem

Let the Hilbert space $w be defined as above. Then :
(1) $Hw coincides with Rc and C : H — $v is an isomorphism (unitary map).

(2) The norm ||.|| is equivalent to the graph norm of G~'/? and, therefore,
Dom(G~?) = §Hy.

(3) C:H — $Hu can be inverted on $Hy by its adjoint C*¥) = S71DI§y,
which yields the following reconstruction formula, for every f € Rs,

f=cWcr = (5*10) Cf

(4) For all f € Rs, we also have

F=3 . 67 Ch

k
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Discrete unbounded frames - 4

Fundamental result :

Let the Hilbert space $w be defined as above. Then :

(1) $Hw coincides with Rc and C : H — $v is an isomorphism (unitary map).

(2) The norm ||.|| is equivalent to the graph norm of G~'/? and, therefore,
Dom(G~?) = §Hy.

(3) C:H — $Hu can be inverted on $Hy by its adjoint C*¥) = S71DI§y,
which yields the following reconstruction formula, for every f € Rs,

f=cWcr = (5*10) Cf

(4) For all f € Rs, we also have

F=3 . 67 Ch

k

(5) For all f € Rp, we have the alternative reconstruction formula

F=3 (67 (Wi Frr)| e

k
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Discrete unbounded frames - 5

@ Exactly as in the continuous case, we have the following diagram:

H £ HSy=RcC Rcc?
@] @]
Dom(S~1)=Rs -5 RV c 2
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Discrete unbounded frames - 5

@ Exactly as in the continuous case, we have the following diagram:

H < Gy=RcC Rcce?
U U
Dom(S~1) =Rs -5 RY c

GY?: Rc — v is an isomorphism and so is its inverse G Y% : 9y — Rc.

@ In order to get a nice reproducing kernel, we have to assume V¥ to be
regular. Indeed:

Let (vx) be a regular unbounded frame. Then $v is a reproducing kernel
Hilbert space, with kernel given by the operator S™'D, which is a matrix
operator, given by the matrix G, where

G, = (i, ST ) = (Wi, CTFGHCoy).
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Discrete unbounded frames - 6

Proof : Let ¢ = Cf € $Hy. Then,
> Gradr = (i, ST G = (i, ST Z¢/¢/ (¥k, S
i i

= (CS71D¢) = (CSTDCF) = (Cf)k = ¢k.
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Discrete unbounded frames - 6

Proof : Let ¢ = Cf € Hy. Then,
> Gradr = (i, ST G = (i, ST Z¢/¢/ (¢k, ST1Dg)
/ ]
= (CST'D}) = (CSTIDCF)x = (Cf)k = ¢k

@ If W is not regular, we have to use a Gel'fand triplet as in the continuous

case.
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Discrete unbounded frames - 6

Proof : Let ¢ = Cf € Hy. Then,
> Gradr = (i, ST G = (i, ST Z¢/¢/ (¢k, ST1Dg)
/ I
= (CS71D¢) = (CSTDCF) = (Cf)k = .

@ If W is not regular, we have to use a Gel'fand triplet as in the continuous
case.

@ Conclusion : everything works as usual, including reconstruction, provided
WV is regular, i.e. ¢, € Dom(Sfl)7 YV n
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Discrete unbounded frames - Example - 1

o Let (ex) be an ONB in H with index set N. Let ¢y = %ek. Then
(k) is an unbounded frame :

0 <) (Wi A<D New H)F = I
k k

The lower bound is 0, since for f = e,, one has Y [ (¢, f)|? = #
K
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Discrete unbounded frames - Example - 1

o Let (ex) be an ONB in H with index set N. Let ¢y = %ek. Then
(k) is an unbounded frame :

0 <) (Wi A<D New H)F = I
k k

The lower bound is 0, since for f = e,, one has Y [ (¢, f)|? = #
K

o Let ¢k = ke : the sequence (¢x) is dual to (1), since one has

D (i F)de = f

k

This is the unbounded dual frame, living in Sﬁux,
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Discrete unbounded frames - Example - 2

@ In this case, the frame operator is S = diag(}) and S™' = diag(k),

so that the inner products are, respectively :

o For Hy 1 (c,d)v =), kCrdk
o For 50:  (c,d)o =7, Crdk

o For 9y @ (c,d)y :Z%dek
P
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Discrete unbounded frames - Example - 2

@ In this case, the frame operator is S = diag(}) and S™' = diag(k),

so that the inner products are, respectively :

o For Hy 1 (c,d)v =), kCrdk
o For 50:  (c,d)o =7, Crdk

o For 9y @ (c,d)y :Z%dek
P

@ The sequence used by Gabor in his original IEE-paper, a Gabor system
with a Gaussian window, a =1 and b = 1, is exactly such a unbounded
frame
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Discrete unbounded frames - Example - 2

@ In this case, the frame operator is S = diag(}) and S™' = diag(k),

so that the inner products are, respectively :
o For Hy 1 (c,d)v =), kCrdk
o For 50:  (c,d)o =7, Crdk
1
F < d\y = ~Cr d
o For $y <C, )W ;kck k

@ The sequence used by Gabor in his original IEE-paper, a Gabor system
with a Gaussian window, a =1 and b = 1, is exactly such a unbounded

frame
@ Generalization :

o (mney), where m € £°° has a subsequence converging to zero and
my # 0,Vn : an unbounded frame, not a frame

° (mie,,) : satisfies the lower frame condition, but is not Bessel.
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Duality - 1

@ In the general case, we have only weak convergence of integrals, in
particular, the reconstruction formula
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Duality - 1

@ In the general case, we have only weak convergence of integrals, in
particular, the reconstruction formula

@ Here, for sequences, we want more : series expansions, preferably with
unconditional convergence
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@ In the general case, we have only weak convergence of integrals, in
particular, the reconstruction formula

@ Here, for sequences, we want more : series expansions, preferably with
unconditional convergence

@ Series expansions for a frame ¢ :

f= Z(%» ) = Z(@/J,,, f)¢n, VF € H, via some sequence W
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Duality - 1

@ In the general case, we have only weak convergence of integrals, in
particular, the reconstruction formula

@ Here, for sequences, we want more : series expansions, preferably with
unconditional convergence

@ Series expansions for a frame ¢ :

f= Z(%» ) = Z(@/J,,, f)¢n, VF € H, via some sequence W

@ In the unbounded case :

Let ® be a Bessel sequence in H. If there exists W such that (at least)
one of the following three conditions hold:

(a1) X, (b, ) =f,VfEH

(a2) >°,{(®n, ) n = f with unconditional convergence of the series for every
feH

(as) >, (@n, F)n=1F,YFfEH, and . (n, ) pn converges for all f € H

then ® is an unbounded frame for H and V satisfies the lower frame condition.)
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Duality - 2

@ This suggests a kind of duality
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Duality - 2

@ This suggests a kind of duality

o W= frame with bounds (m, M)

& canonical dual W = frame with bounds (M~!, m~!)
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Duality - 2

@ This suggests a kind of duality
e W= frame with bounds (m, M)

& canonical dual W = frame with bounds (M~!, m~!)

o Unbounded frame W ~ m =0 = S bounded, S™! unbounded
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Duality - 2

@ This suggests a kind of duality
e W= frame with bounds (m, M)

& canonical dual W = frame with bounds (M~*, m~)
o Unbounded frame W ~ m =0 = S bounded, S™! unbounded

o ‘Dual' ¥V = sequence satisfying the lower frame condition
= S unbounded, S™! bounded
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Duality - 2

@ This suggests a kind of duality
e W= frame with bounds (m, M)

& canonical dual W = frame with bounds (M~*, m~)

o Unbounded frame W ~ m =0 = S bounded, S™! unbounded

o ‘Dual" W = sequence satisfying the lower frame condition
= S unbounded, S™! bounded
@ From exact results, there is duality between
o Unbounded frames = complete Bessel sequences
o Complete sequences satisfying the lower frame condition

=> various series expansions, with appropriate convergence
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Generalizations

@ Generalization : Rank n frames

° AsetofvectorsﬁiEf}7 i=1,2...,n<o00, x¢€X,isarankn
frame F = F{ny, S, n} if

(i) forallx € X, {ni,i=1,2,...,n}is a linearly independent set

(ii) there exists a positive operator S € GL($)) such that, with weak
convergence,

> [ it v = [ ) avte) = s

(A(x) = positive, operator valued function on X)
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o Further generalization : weighted rank n frames frames (g-frames)

@ For n > 1, connection with fusion frames ?
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Generalizations

@ Generalization : Rank n frames

° Asetofvectors‘nief), i=1,2...,n<o00, x¢€X,isarankn
frame F = F{ny, S, n} if

(i) forallx € X, {ni,i=1,2,...,n}is a linearly independent set

(ii) there exists a positive operator S € GL($)) such that, with weak
convergence,

> [ ot )= [ Ao avte) = 5

(A(x) = positive, operator valued function on X)

= various notions of equivalence of frames

o Further generalization : weighted rank n frames frames (g-frames)
@ For n > 1, connection with fusion frames ?

@ Connection with frame multipliers ?
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