Unbounded frames

Jean-Pierre Antoine

Institut de Physique Théorique, Université catholique de Louvain Louvain-la-Neuve, Belgium

(Joint work with Peter Balazs and Diana Stoeva)

FNRS Contact Group "Wavelets and Applications"

April 27, 2010

Esneux

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - の々で

From coherent states to frames - 1

•

Three successive stages (ST.Ali - JPA - J-P.Gazeau, 1991-1993) (1) Coherent states on locally compact group

$$\int_{\mathcal{G}} |\eta_{g}\rangle \langle \eta_{g}| \, \mathrm{d}\nu(g) = I \quad \Leftrightarrow \quad \int_{\mathcal{G}} |\langle \eta_{g}|\phi\rangle|^{2} \, \mathrm{d}\nu(g) = \|\phi\|^{2}, \quad \forall \phi \in \mathcal{H}$$

- G = locally compact group, with (left) Haar measure d
 u(g)
- $\eta \in \mathcal{H}$, a fixed vector in the Hilbert space \mathcal{H}
- $\eta_g = U(g)\eta$, U = strongly continuous, square integrable unitary representation of G on \mathcal{H}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

From coherent states to frames - 1

Three successive stages (ST.Ali - JPA - J-P.Gazeau, 1991-1993) (1) Coherent states on locally compact group

$$\int_{\mathcal{G}} |\eta_{g}\rangle \langle \eta_{g}| \, \mathrm{d}\nu(g) = I \quad \Leftrightarrow \quad \int_{\mathcal{G}} |\langle \eta_{g}|\phi\rangle|^{2} \, \mathrm{d}\nu(g) = \|\phi\|^{2}, \quad \forall \phi \in \mathcal{H}$$

- G = locally compact group, with (left) Haar measure $\mathrm{d}
 u(g)$
- $\eta \in \mathcal{H}$, a fixed vector in the Hilbert space \mathcal{H}
- $\eta_g = U(g)\eta$, U = strongly continuous, square integrable unitary representation of G on \mathcal{H}
- (2) Coherent states on homogeneous space
 - H= closed subgroup of G, X = G/H, ν = invariant measure on X, Borel section $\sigma : G/H \rightarrow G$,
 - U = unitary representation of G, square integrable modulo the subgroup H and the Borel section σ, i.e.

$$\int_X |\eta_{\sigma(x)}\rangle \langle \eta_{\sigma(x)}| \, \mathrm{d}\nu(x) = S_{\sigma}, \quad \eta_{\sigma(x)} = U(\sigma(x))\eta$$

converges weakly to a bounded, positive, invertible operator S_σ

$$\iff \int_X |\langle \eta_{\sigma(\mathsf{x})} | \phi \rangle|^2 \, \mathrm{d}\nu(\mathsf{x}) = \langle \phi, \mathcal{S}_\sigma \phi \rangle, \quad \forall \phi \in \mathcal{H}$$

- measure space (X, ν)
- bounded, positive, invertible operator S, acting on a Hilbert space $\mathcal H$
- ν-measurable function Λ from X into the bounded positive operators on H, s.t. (weakly)

$$\int_X \Lambda(x) \, \mathrm{d}\nu(x) = S$$

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

- measure space (X, ν)
- bounded, positive, invertible operator S, acting on a Hilbert space $\mathcal H$
- ν-measurable function Λ from X into the bounded positive operators on H, s.t. (weakly)

$$\int_X \Lambda(x) \, \mathrm{d}\nu(x) = S$$

 \Rightarrow overcomplete family of (generalized) coherent states

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

- measure space (X, ν)
- bounded, positive, invertible operator S, acting on a Hilbert space $\mathcal H$
- ν-measurable function Λ from X into the bounded positive operators on H, s.t. (weakly)

$$\int_X \Lambda(x) \, \mathrm{d}\nu(x) = S$$

 \Rightarrow overcomplete family of (generalized) coherent states

- $\{\mathfrak{H}, \Lambda, S\} =$ frame if
 - rank $\Lambda(x)$ is constant and finite
 - S^{-1} is a bounded operator

(日) (四) (日) (日) (日) (日)

- Coherent states
 - X = locally compact space with measure ν
 - $\Psi := \{\psi_x, x \in X\} \subset \mathcal{H}$ a family of vectors indexed by points of X
 - Ψ is a set of coherent states (CS) if

$$\int_{X} \langle f, \psi_{x} \rangle \langle \psi_{x}, f' \rangle \, \mathrm{d}\nu(x) = \langle f, Sf' \rangle, \; \forall f, f' \in \mathcal{H}$$

where S is a bounded, positive, self-adjoint, invertible operator on ${\cal H}$

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Frames and unbounded frames - 1

- Coherent states
 - X = locally compact space with measure ν
 - $\Psi := \{\psi_x, x \in X\} \subset \mathcal{H}$ a family of vectors indexed by points of X
 - Ψ is a set of coherent states (CS) if

$$\int_X \langle f, \psi_x \rangle \langle \psi_x, f' \rangle \, \mathrm{d}\nu(x) = \langle f, Sf' \rangle, \; \forall f, f' \in \mathcal{H}$$

where S is a bounded, positive, self-adjoint, invertible operator on ${\cal H}$

• If S^{-1} is bounded, usual frame condition : $\{\psi_x\} \subset \mathcal{H}$ is a frame if there exist constants m > 0 and $M < \infty$ such that

$$\begin{split} & \mathsf{m} \left\| f \right\|^2 \leqslant \int_X \left| \langle \psi_x, f \rangle \right|^2 \, \mathrm{d}\nu(x) \leqslant \mathsf{M} \left\| f \right\|^2, \forall f \in \mathcal{H} \\ \Rightarrow \langle f, Sf \rangle = \int_X \left| \langle \psi_x, f \rangle \right|^2 \, \mathrm{d}\nu(x) \end{split}$$

S = frame operator, $Sp(S) \subset [m, M]$

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへで

Frames and unbounded frames - 1

- Coherent states
 - X = locally compact space with measure u
 - $\Psi := \{\psi_x, x \in X\} \subset \mathcal{H}$ a family of vectors indexed by points of X
 - Ψ is a set of coherent states (CS) if

$$\int_X \langle f, \psi_x \rangle \langle \psi_x, f' \rangle \, \mathrm{d}\nu(x) = \langle f, Sf' \rangle, \; \forall f, f' \in \mathcal{H}$$

where S is a bounded, positive, self-adjoint, invertible operator on ${\cal H}$

• If S^{-1} is bounded, usual frame condition : $\{\psi_x\} \subset \mathcal{H}$ is a frame if there exist constants m > 0 and $M < \infty$ such that

$$\begin{split} & \mathsf{m} \left\| f \right\|^2 \leqslant \int_X \left| \langle \psi_x, f \rangle \right|^2 \, \mathrm{d}\nu(x) \leqslant \mathsf{M} \left\| f \right\|^2, \forall f \in \mathcal{H} \\ \Rightarrow \langle f, Sf \rangle = \int_X \left| \langle \psi_x, f \rangle \right|^2 \, \mathrm{d}\nu(x) \end{split}$$

S = frame operator, $Sp(S) \subset [m, M]$

• If S^{-1} is unbounded, with dense domain $Dom(S^{-1})$, so that we can write

$$0 < \int_{X} |\langle \psi_x, f \rangle|^2 \, \mathrm{d}
u(x) \leqslant \mathsf{M} \left\| f \right\|^2, \forall f \in \mathcal{H},$$

then Ψ is called an unbounded frame

Program :

• How can one reconstruct the signal?

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Program :

- How can one reconstruct the signal?
- Formalism known in the continuous case (via the Coherent states approach), will be particularized to discrete setting

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - の々で

Program :

- How can one reconstruct the signal?
- Formalism known in the continuous case (via the Coherent states approach), will be particularized to discrete setting
- May be formulated in a Gel'fand triplet $\Phi \subset \mathfrak{H} \subset \Phi^{\times}$, in which Φ is essentially the domain of S^{-1} with graph norm

▲ロト ▲帰 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Properties of frames (S^{-1} bounded)

 $\bullet~\Psi$ is total in ${\cal H}$

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

General frames - 1

Properties of frames (S^{-1} bounded)

- $\bullet~\Psi$ is total in ${\cal H}$
- Define the CS map $W_{\Psi}: \mathcal{H}
 ightarrow L^2(X, \, \mathrm{d}
 u)$ by

$$(W_{\Psi}f)(x)=\langle\psi_x,f
angle,\;f\in\mathcal{H}$$

Then $W_{\Psi}^* W_{\Psi} = S$, since $\|W_{\Psi}f\|_{L^2(X)}^2 = \|S^{1/2}f\|_{\mathcal{H}}^2 = \langle f, Sf \rangle$

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - の々で

General frames - 1

Properties of frames (S^{-1} bounded)

- $\bullet~\Psi$ is total in ${\cal H}$
- Define the CS map $W_{\Psi}: \mathcal{H} \to L^2(X, \, \mathrm{d}
 u)$ by

$$(W_{\Psi}f)(x) = \langle \psi_x, f \rangle, \ f \in \mathcal{H}$$

Then $W_{\Psi}^*W_{\Psi} = S$, since $\|W_{\Psi}f\|_{L^2(X)}^2 = \|S^{1/2}f\|_{\mathcal{H}}^2 = \langle f, Sf \rangle$

• Since S > 0, W_{Ψ} is injective and $W_{\Psi}^{-1} : \mathsf{Ran}(W_{\Psi}) :\rightarrow \mathcal{H}$ is well-defined

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

General frames - 1

Properties of frames (S^{-1} bounded)

- $\bullet \ \Psi \ \text{is total in} \ \mathcal{H}$
- Define the CS map $W_{\Psi}: \mathcal{H}
 ightarrow L^2(X, \, \mathrm{d}
 u)$ by

$$(W_{\Psi}f)(x) = \langle \psi_x, f \rangle, \ f \in \mathcal{H}$$

Then $W_{\Psi}^*W_{\Psi} = S$, since $\|W_{\Psi}f\|_{L^2(X)}^2 = \|S^{1/2}f\|_{\mathcal{H}}^2 = \langle f, Sf \rangle$

- Since S > 0, W_{Ψ} is injective and $W_{\Psi}^{-1} : \mathsf{Ran}(W_{\Psi}) :\rightarrow \mathcal{H}$ is well-defined
- Ran(W_Ψ) is a closed subspace 𝔅_Ψ of L²(X, dν), which is complete for the new scalar product

$$\langle \phi, \phi' \rangle_{\Psi} := \langle \phi, W_{\Psi} S^{-1} W_{\Psi}^{-1} \phi' \rangle_{L^{2}(X)}, \ \phi, \phi' \in \mathsf{Ran}(W_{\Psi})$$

and $W_{\Psi} : \mathcal{H} \to \mathfrak{H}_{\Psi}$ is unitary:

$$\begin{aligned} \langle \phi, \phi' \rangle_{\Psi} &= \langle W_{\Psi}f, W_{\Psi}f' \rangle_{\Psi} = \langle W_{\Psi}f, W_{\Psi}S^{-1}W_{\Psi}^{-1}W_{\Psi}f' \rangle_{L^{2}(X)} \\ &= \langle W_{\Psi}f, W_{\Psi}S^{-1}f' \rangle_{L^{2}(X)} \\ &= \langle f, W_{\Psi}^{*}W_{\Psi}S^{-1}f' \rangle_{\mathcal{H}} \\ &= \langle f, f' \rangle_{\mathcal{H}} \end{aligned}$$

The projection from L²(X, dν) onto 𝔅_Ψ is ℙ_Ψ = W_ΨW_Ψ^{*} and it is an integral operator with kernel K(x, y) = ⟨ψ_x, S⁻¹ψ_y⟩ i.e., 𝔅_Ψ is a reproducing kernel Hilbert space

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- The projection from L²(X, dν) onto 𝔅_Ψ is ℙ_Ψ = W_ΨW_Ψ^{*} and it is an integral operator with kernel K(x, y) = ⟨ψ_x, S⁻¹ψ_y⟩ i.e., 𝔅_Ψ is a reproducing kernel Hilbert space
- \Rightarrow The elements of \mathfrak{H}_Ψ are genuine functions, not equivalence classes

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへで

- The projection from L²(X, dν) onto 𝔅_Ψ is ℙ_Ψ = W_ΨW_Ψ^{*} and it is an integral operator with kernel K(x, y) = ⟨ψ_x, S⁻¹ψ_y⟩ i.e., 𝔅_Ψ is a reproducing kernel Hilbert space
- $\Rightarrow\,$ The elements of \mathfrak{H}_{Ψ} are genuine functions, not equivalence classes
 - All this can also be expressed in terms of the evaluation map $E(x) : f \mapsto f(x)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- The projection from L²(X, dν) onto 𝔅_Ψ is ℙ_Ψ = W_ΨW_Ψ^{*} and it is an integral operator with kernel K(x, y) = ⟨ψ_x, S⁻¹ψ_y⟩ i.e., 𝔅_Ψ is a reproducing kernel Hilbert space
- $\Rightarrow\,$ The elements of \mathfrak{H}_{Ψ} are genuine functions, not equivalence classes
 - All this can also be expressed in terms of the evaluation map $E(x) : f \mapsto f(x)$
 - Inverting W_{Ψ} on its range by the adjoint operator, one gets a reconstruction formula

$$f = W_{\Psi}^{-1}\phi = W_{\Psi}^*\phi = \int_X \phi(x) S^{-1} \psi_x \, \mathrm{d} \nu(x), \ \phi \in \mathfrak{H}_{\Psi}$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

The case S^{-1} unbounded

• Ψ is total in ${\cal H}$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

The case S^{-1} unbounded

- $\bullet~\Psi$ is total in ${\cal H}$
- Write R_W := Ran(W_Ψ) and R_S := Ran(S) = Dom(S⁻¹) Then one has :

 $\begin{array}{ccc} \mathcal{H} & \xrightarrow{W_{\Psi}} & R_{W} \subset & \overline{R_{W}} \subset L^{2}(X, \, \mathrm{d}\nu) \\ \cup & & \cup \\ & & \bigcup \\ & & & \bigcup \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\$

▲ロト ▲帰 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

The case S^{-1} unbounded

- $\bullet~\Psi$ is total in ${\cal H}$
- Write R_W := Ran(W_Ψ) and R_S := Ran(S) = Dom(S⁻¹) Then one has :

 $\begin{array}{cccc} \mathcal{H} & \xrightarrow{W_{\Psi}} & R_{W} \subset & \overline{R_{W}} \subset L^{2}(X, \, \mathrm{d}\nu) \\ \cup & & \cup \\ & & & \cup \\ & & & & \\ & & & & \\ &$

Then the map W_{Ψ} , restricted to the dense domain $Dom(S^{-1}) = R_S$, is an isometry into \mathfrak{H}_{Ψ} :

 $\langle W_\Psi f, W_\Psi f' \rangle_\Psi = \langle f, f' \rangle_{\mathcal{H}}, \ \forall \, f, g \in R_S \quad \text{(same calculation as before)}$

The case S^{-1} unbounded

- $\bullet~\Psi$ is total in ${\cal H}$
- Write R_W := Ran(W_Ψ) and R_S := Ran(S) = Dom(S⁻¹) Then one has :

 $\begin{array}{ccc} \mathcal{H} & \xrightarrow{W_{\Psi}} & R_{W} \subset & \overline{R_{W}} \subset L^{2}(X, \, \mathrm{d}\nu) \\ \cup & & \cup \\ & & & \cup \\ & & &$

Then the map W_{Ψ} , restricted to the dense domain $Dom(S^{-1}) = R_S$, is an isometry into \mathfrak{H}_{Ψ} :

(completion in norm $\|\cdot\|_{\Psi}$)

 $\langle W_{\Psi}f, W_{\Psi}f'\rangle_{\Psi} = \langle f, f'\rangle_{\mathcal{H}}, \ \forall \, f, g \in R_{\mathcal{S}} \quad \text{(same calculation as before)}$

• Thus W_{Ψ} extends by continuity to a unitary map from \mathcal{H} onto $\mathfrak{H}_{\Psi} := \overline{W_{\Psi}(R_S)}^{\Psi}$

Thus we get
 ^Φ = *R*_W, which therefore is a subspace (though not necessarily closed) of *L*²(*X*, dν):

$$\begin{array}{ccc} \mathcal{H} & \xrightarrow{W_{\Psi}} & \mathfrak{H}_{\Psi} = R_{W} \subset \overline{R_{W}} \subset L^{2}(X, \, \mathrm{d}\nu) \\ & \cup & & \cup \\ \mathrm{Dom}(S^{-1}) = R_{S} & \xrightarrow{W_{\Psi}} & W_{\Psi}(R_{S}) \subset \ L^{2}(X, \, \mathrm{d}\nu) \end{array}$$

・ロト ・得ト ・ヨト ・ヨト

-

Thus we get
 ^Φ = *R_W*, which therefore is a subspace (though not necessarily closed) of *L*²(*X*, d*ν*):

$$\begin{array}{ccc} \mathcal{H} & \xrightarrow{W_{\Psi}} & \mathfrak{H}_{\Psi} = R_{W} \subset \overline{R_{W}} \subset L^{2}(X, \, \mathrm{d}\nu) \\ & \cup & & \cup \\ & & \cup \\ \mathsf{Dom}(S^{-1}) = R_{S} & \xrightarrow{W_{\Psi}} & W_{\Psi}(R_{S}) \subset L^{2}(X, \, \mathrm{d}\nu) \end{array}$$

• $S_{\Psi}^{-1} := W_{\Psi} S^{-1} W_{\Psi}^{-1} = [W_{\Psi} S W_{\Psi}^{-1}]^{-1}$ is a positive self-adjoint operator, with domain dense in \overline{R}_W , and the norm $\|\cdot\|_{\Psi}$ is equivalent to the graph norm of $S_{\Psi}^{-1/2}$, so that

$$\mathsf{Dom}(S^{-1/2}_{\Psi}) = \mathfrak{H}_{\Psi} \subset \overline{R_W} \subset L^2(X, \, \mathrm{d}
u)$$

・ロン ・ 理 と ・ ヨ と ・ ヨ ・ うくで

Thus we get
 ^Φ = *R_W*, which therefore is a subspace (though not necessarily closed) of *L*²(*X*, d*ν*):

$$\begin{array}{ccc} \mathcal{H} & \xrightarrow{W_{\Psi}} & \mathfrak{H}_{\Psi} = R_{W} \subset \overline{R_{W}} \subset L^{2}(X, \, \mathrm{d}\nu) \\ & \cup & & \cup \\ \mathsf{Dom}(S^{-1}) = R_{S} & \xrightarrow{W_{\Psi}} & W_{\Psi}(R_{S}) \subset \ L^{2}(X, \, \mathrm{d}\nu) \end{array}$$

• $S_{\Psi}^{-1} := W_{\Psi} S^{-1} W_{\Psi}^{-1} = [W_{\Psi} S W_{\Psi}^{-1}]^{-1}$ is a positive self-adjoint operator, with domain dense in \overline{R}_W , and the norm $\|\cdot\|_{\Psi}$ is equivalent to the graph norm of $S_{\Psi}^{-1/2}$, so that

$$\mathsf{Dom}(S_{\Psi}^{-1/2}) = \mathfrak{H}_{\Psi} \subset \overline{R_W} \subset L^2(X, \mathrm{d}\nu)$$

• $W_{\Psi}^{-1}: \mathfrak{H}_{\Psi} \to \mathcal{H}$ is unitary, hence it is the adjoint of $W_{\Psi}: \mathcal{H} \to \mathfrak{H}_{\Psi}$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Thus we get
 ^Φ = *R_W*, which therefore is a subspace (though not necessarily closed) of *L*²(*X*, d*ν*):

$$\begin{array}{ccc} \mathcal{H} & \xrightarrow{W_{\Psi}} & \mathfrak{H}_{\Psi} = R_{W} \subset \overline{R_{W}} \subset L^{2}(X, \, \mathrm{d}\nu) \\ & \cup & & \cup \\ \mathsf{Dom}(S^{-1}) = R_{S} & \xrightarrow{W_{\Psi}} & W_{\Psi}(R_{S}) \subset \ L^{2}(X, \, \mathrm{d}\nu) \end{array}$$

• $S_{\Psi}^{-1} := W_{\Psi} S^{-1} W_{\Psi}^{-1} = [W_{\Psi} S W_{\Psi}^{-1}]^{-1}$ is a positive self-adjoint operator, with domain dense in $\overline{R_W}$, and the norm $\|\cdot\|_{\Psi}$ is equivalent to the graph norm of $S_{\Psi}^{-1/2}$, so that

$$\mathsf{Dom}(S^{-1/2}_{\Psi}) = \mathfrak{H}_{\Psi} \subset \overline{R_W} \subset L^2(X, \mathrm{d}\nu)$$

• $W_{\Psi}^{-1} : \mathfrak{H}_{\Psi} \to \mathcal{H}$ is unitary, hence it is the adjoint of $W_{\Psi} : \mathcal{H} \to \mathfrak{H}_{\Psi}$ $\Rightarrow S_{\Psi}$ and S_{Ψ}^{-1} are unitary images of S and S^{-1} , thus

$$\|S_{\Psi}\|_{\Psi} = \|S\|_{\mathcal{H}}$$

(日) (司) (日) (日) (日) (日)

- Definition : the unbounded frame $\Psi = \{\psi_x, x \in X\}$ is regular if $\psi_x \in \text{Dom}(S^{-1}), \forall x \in X$
- \Rightarrow the reproducing kernel $K(x, y) = \langle \psi_x, S^{-1}\psi_y \rangle$ is a bona fide function on $X \times X$

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - の々で

- Definition : the unbounded frame Ψ = {ψ_x, x ∈ X} is regular if ψ_x ∈ Dom(S⁻¹), ∀ x ∈ X
- \Rightarrow the reproducing kernel $K(x, y) = \langle \psi_x, S^{-1}\psi_y \rangle$ is a bona fide function on $X \times X$
 - If Ψ is regular, we get the same reconstruction formula

$$f = W_{\Psi}^{-1}\phi = W_{\Psi}^*\phi = \int_X \phi(x) S^{-1} \psi_x \, \mathrm{d}\nu(x), \ \phi \in \mathfrak{H}_{\Psi}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

- Definition : the unbounded frame Ψ = {ψ_x, x ∈ X} is regular if ψ_x ∈ Dom(S⁻¹), ∀ x ∈ X
- \Rightarrow the reproducing kernel $K(x, y) = \langle \psi_x, S^{-1}\psi_y \rangle$ is a bona fide function on $X \times X$
 - If Ψ is regular, we get the same reconstruction formula

$$f = W_{\Psi}^{-1}\phi = W_{\Psi}^*\phi = \int_X \phi(x) S^{-1} \psi_x \, \mathrm{d}\nu(x), \ \phi \in \mathfrak{H}_{\Psi}$$

- If Ψ is not regular, use language of distributions :
 K(x, y) defines a bounded sesquilinear form over S_Ψ
- Best formulation : in terms of a Gel'fand triplet

$$\mathfrak{H}_{\Psi}\,\subset\,\mathfrak{H}_0\,\subset\,\mathfrak{H}_{\Psi}^{ imes}$$

where

•
$$\mathfrak{H}_0 := \overline{\mathfrak{H}_{\Psi}} = \overline{R_W} = \text{closure of } \mathfrak{H}_{\Psi} \text{ in } L^2(X, \, \mathrm{d}\nu)$$

- Definition : the unbounded frame Ψ = {ψ_x, x ∈ X} is regular if ψ_x ∈ Dom(S⁻¹), ∀x ∈ X
- \Rightarrow the reproducing kernel $K(x, y) = \langle \psi_x, S^{-1}\psi_y \rangle$ is a bona fide function on $X \times X$
 - If Ψ is regular, we get the same reconstruction formula

$$f = W_{\Psi}^{-1}\phi = W_{\Psi}^*\phi = \int_X \phi(x) S^{-1} \psi_x \, \mathrm{d} \nu(x), \ \phi \in \mathfrak{H}_{\Psi}$$

- If Ψ is not regular, use language of distributions :
 K(x, y) defines a bounded sesquilinear form over S_Ψ
- Best formulation : in terms of a Gel'fand triplet

$$\mathfrak{H}_{\Psi}\,\subset\,\mathfrak{H}_0\,\subset\,\mathfrak{H}_{\Psi}^{ imes}$$

where

•
$$\mathfrak{H}_0 := \overline{\mathfrak{H}_{\Psi}} = \overline{R_W} = \text{closure of } \mathfrak{H}_{\Psi} \text{ in } L^2(X, \, \mathrm{d}\nu)$$

- $\mathfrak{H}_{\Psi}^{\times} = \text{conjugate dual of } \mathfrak{H}_{\Psi}$
- $\Rightarrow~\mathfrak{H}_{\Psi}^{\times}$ carries the unbounded version of the dual frame

 $\bullet\,$ Even if Ψ is not regular, one has

$$\iint_{X \times X} \overline{\phi(x)} \mathcal{K}(x, y) \chi(y) \, \mathrm{d}\nu(x) \, \mathrm{d}\nu(y) = \langle W_{\Psi}^{-1} \phi, S W_{\Psi}^{-1} \chi \rangle_{\mathcal{H}}$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

• Even if Ψ is not regular, one has

$$\iint_{X \times X} \overline{\phi(x)} \mathcal{K}(x, y) \chi(y) \, \mathrm{d}\nu(x) \, \mathrm{d}\nu(y) = \langle W_{\Psi}^{-1} \phi, S W_{\Psi}^{-1} \chi \rangle_{\mathcal{H}}$$

• Since W_{Ψ} is an isometry and S is bounded, this relation defines a bounded sesquilinear form over \mathfrak{H}_{Ψ} :

$$\mathcal{K}^{\Psi}(\phi,\chi) = \langle W_{\Psi}^{-1}\phi, SW_{\Psi}^{-1}\chi \rangle_{\mathcal{H}}$$

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - の々で

• Even if Ψ is not regular, one has

$$\iint_{X \times X} \overline{\phi(x)} \mathcal{K}(x, y) \chi(y) \, \mathrm{d}\nu(x) \, \mathrm{d}\nu(y) = \langle W_{\Psi}^{-1} \phi, S W_{\Psi}^{-1} \chi \rangle_{\mathcal{H}}$$

• Since W_{Ψ} is an isometry and S is bounded, this relation defines a bounded sesquilinear form over \mathfrak{H}_{Ψ} :

$$\mathcal{K}^{\Psi}(\phi,\chi) = \langle W_{\Psi}^{-1}\phi, SW_{\Psi}^{-1}\chi \rangle_{\mathcal{H}}$$

• Let $\mathfrak{H}_{\Psi}^{\times}=$ completion of \mathfrak{H}_{Ψ} in the norm given by ${\cal K}^{\Psi}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• Even if Ψ is not regular, one has

$$\iint_{X \times X} \overline{\phi(x)} \mathcal{K}(x, y) \chi(y) \, \mathrm{d}\nu(x) \, \mathrm{d}\nu(y) = \langle W_{\Psi}^{-1} \phi, S W_{\Psi}^{-1} \chi \rangle_{\mathcal{H}}$$

• Since W_{Ψ} is an isometry and S is bounded, this relation defines a bounded sesquilinear form over \mathfrak{H}_{Ψ} :

$$\mathcal{K}^{\Psi}(\phi,\chi) = \langle W_{\Psi}^{-1}\phi, SW_{\Psi}^{-1}\chi \rangle_{\mathcal{H}}$$

- Let $\mathfrak{H}_{\Psi}^{\times}=$ completion of \mathfrak{H}_{Ψ} in the norm given by ${\cal K}^{\Psi}$
- Reproducing property of K(x, y) implies

$$\int_{X} \overline{\phi(x)} \chi(x) \, \mathrm{d}\nu(x) = \langle \phi, \chi \rangle_{L^{2}(X, \, \mathrm{d}\nu)} = \mathcal{K}^{\Psi}(\phi, \chi)$$

Thus, with continuous and dense range embeddings,

$$\mathfrak{H}_{\Psi} \subset \mathfrak{H}_0 \subset \mathfrak{H}_{\Psi}^{ imes}$$

where

.
$$\mathfrak{H}_{\Psi} = R_W = \text{Hilbert space for the norm } \|\cdot\|_{\Psi} = \langle \cdot, W_{\Psi} S^{-1} W_{\Psi}^{-1} \cdot \rangle^{1/2}$$

. $\mathfrak{H}_0 = \overline{\mathfrak{H}_{\Psi}}$ is the closure of \mathfrak{H}_{Ψ} in $L^2(X, d\nu)$

.
$$\mathfrak{H}_{\Psi}^{\times} = \text{completion of } \mathfrak{H}_{0} \text{ in the norm } \|\cdot\|_{\Psi}^{\times} := \langle \cdot, W_{\Psi} \mathsf{S} W_{\Psi}^{-1} \cdot \rangle^{1/2}$$

= conjugate dual of \mathfrak{H}_{Ψ}
- $\mathfrak{H}_{\Psi}^{\times} = \text{conjugate dual of } \mathfrak{H}_{\Psi}$:
 - K^{Ψ} bounded $\Rightarrow X_{\phi} := K^{\Psi}(\phi, \cdot)$ defines, for each $\phi \in \mathfrak{H}_{\Psi}$, an element X_{ϕ} of the conjugate dual of \mathfrak{H}_{Ψ}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- $\mathfrak{H}_{\Psi}^{\times} =$ conjugate dual of \mathfrak{H}_{Ψ} :
 - \mathcal{K}^{Ψ} bounded $\Rightarrow X_{\phi} := \mathcal{K}^{\Psi}(\phi, \cdot)$ defines, for each $\phi \in \mathfrak{H}_{\Psi}$, an element X_{ϕ} of the conjugate dual of \mathfrak{H}_{Ψ}
 - Inner product $\langle X_{\phi}, X_{\chi} \rangle_{\Psi^{\times}} = \langle W_{\Psi}^{-1}\phi, SW_{\Psi}^{-1}\chi \rangle_{\mathcal{H}} + \text{completion}$
 - \Rightarrow Hilbert space $\mathfrak{H}_{\Psi}^{\times}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• $\mathfrak{H}_{\Psi}^{\times} =$ conjugate dual of \mathfrak{H}_{Ψ} :

- \mathcal{K}^{Ψ} bounded $\Rightarrow X_{\phi} := \mathcal{K}^{\Psi}(\phi, \cdot)$ defines, for each $\phi \in \mathfrak{H}_{\Psi}$, an element X_{ϕ} of the conjugate dual of \mathfrak{H}_{Ψ}
- Inner product $\langle X_{\phi}, X_{\chi} \rangle_{\Psi^{\times}} = \langle W_{\Psi}^{-1}\phi, SW_{\Psi}^{-1}\chi \rangle_{\mathcal{H}} + \text{completion}$ $\Rightarrow \text{ Hilbert space } \mathfrak{H}_{\Psi}^{\times}$
- One has also, for each $X \in \mathfrak{H}_{\Psi}^{\times}$,

$$X(\phi) = \langle X, X_{\phi}
angle = \langle X, K^{\Psi}(\phi, \cdot)
angle_{\Psi^{ imes}}$$

which expresses the reproducing property of the kernel ${\cal K}^\Psi$ as a function over $\overline{\mathfrak{H}_\Psi}\times\mathfrak{H}_\Psi$

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへで

• $\mathfrak{H}_{\Psi}^{\times} =$ conjugate dual of \mathfrak{H}_{Ψ} :

- \mathcal{K}^{Ψ} bounded $\Rightarrow X_{\phi} := \mathcal{K}^{\Psi}(\phi, \cdot)$ defines, for each $\phi \in \mathfrak{H}_{\Psi}$, an element X_{ϕ} of the conjugate dual of \mathfrak{H}_{Ψ}
- Inner product $\langle X_{\phi}, X_{\chi} \rangle_{\Psi^{\times}} = \langle W_{\Psi}^{-1}\phi, SW_{\Psi}^{-1}\chi \rangle_{\mathcal{H}} + \text{completion}$ $\Rightarrow \text{ Hilbert space } \mathfrak{H}_{\Psi}^{\times}$
- One has also, for each $X \in \mathfrak{H}_{\Psi}^{\times}$,

$$X(\phi) = \langle X, X_{\phi}
angle = \langle X, {\mathcal K}^{\Psi}(\phi, \cdot)
angle_{\Psi^{ imes}}$$

which expresses the reproducing property of the kernel ${\cal K}^\Psi$ as a function over $\overline{\mathfrak{H}_\Psi}\times\mathfrak{H}_\Psi$

• If S^{-1} is bounded (frame), the three Hilbert spaces coincide as sets, with equivalent norms, since $S, S^{-1} \in GL(\mathcal{H})$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

• $\mathfrak{H}_{\Psi}^{\times} =$ conjugate dual of \mathfrak{H}_{Ψ} :

- \mathcal{K}^{Ψ} bounded $\Rightarrow X_{\phi} := \mathcal{K}^{\Psi}(\phi, \cdot)$ defines, for each $\phi \in \mathfrak{H}_{\Psi}$, an element X_{ϕ} of the conjugate dual of \mathfrak{H}_{Ψ}
- Inner product $\langle X_{\phi}, X_{\chi} \rangle_{\Psi^{\times}} = \langle W_{\Psi}^{-1}\phi, SW_{\Psi}^{-1}\chi \rangle_{\mathcal{H}} + \text{completion}$ $\Rightarrow \text{ Hilbert space } \mathfrak{H}_{\Psi}^{\times}$
- One has also, for each $X \in \mathfrak{H}_{\Psi}^{\times}$,

$$X(\phi) = \langle X, X_{\phi}
angle = \langle X, {\mathcal K}^{\Psi}(\phi, \cdot)
angle_{\Psi^{ imes}}$$

which expresses the reproducing property of the kernel ${\cal K}^\Psi$ as a function over $\overline{\mathfrak{H}_\Psi}\times\mathfrak{H}_\Psi$

- If S^{-1} is bounded (frame), the three Hilbert spaces coincide as sets, with equivalent norms, since $S, S^{-1} \in GL(\mathcal{H})$
- If Ψ is regular, all three spaces 𝔅_Ψ, 𝔅₀, 𝔅_Ψ[×] are reproducing kernel Hilbert spaces, with the same kernel K(x, y) = ⟨ψ_x, S⁻¹ψ_y⟩

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

• $\mathfrak{H}_{\Psi}^{\times} = \text{conjugate dual of } \mathfrak{H}_{\Psi}$:

- \mathcal{K}^{Ψ} bounded $\Rightarrow X_{\phi} := \mathcal{K}^{\Psi}(\phi, \cdot)$ defines, for each $\phi \in \mathfrak{H}_{\Psi}$, an element X_{ϕ} of the conjugate dual of \mathfrak{H}_{Ψ}
- Inner product $\langle X_{\phi}, X_{\chi} \rangle_{\Psi^{\times}} = \langle W_{\Psi}^{-1} \phi, SW_{\Psi}^{-1} \chi \rangle_{\mathcal{H}} + \text{completion}$ $\Rightarrow \text{ Hilbert space } \mathfrak{H}_{\Psi}^{\times}$
- One has also, for each $X \in \mathfrak{H}_{\Psi}^{\times}$,

$$X(\phi) = \langle X, X_{\phi}
angle = \langle X, {\mathcal K}^{\Psi}(\phi, \cdot)
angle_{\Psi^{ imes}}$$

which expresses the reproducing property of the kernel ${\cal K}^\Psi$ as a function over $\overline{\mathfrak{H}_\Psi}\times\mathfrak{H}_\Psi$

- If S^{-1} is bounded (frame), the three Hilbert spaces coincide as sets, with equivalent norms, since $S, S^{-1} \in GL(\mathcal{H})$
- If Ψ is regular, all three spaces $\mathfrak{H}_{\Psi}, \mathfrak{H}_{0}, \mathfrak{H}_{\Psi}^{\times}$ are reproducing kernel Hilbert spaces, with the same kernel $\mathcal{K}(x, y) = \langle \psi_x, S^{-1}\psi_y \rangle$
- \bullet One obtains another Gel'fand triple via the map ${\it W}_{\Psi}$:

$$\widetilde{\mathfrak{H}}_{\Psi} \ \subset \ \widetilde{\mathfrak{H}}_{0} \ \subset \ \widetilde{\mathfrak{H}}_{\Psi}^{\times}$$

where $\widetilde{\mathfrak{H}}_0$ is a reproducing kernel subspace of $L^2(X, \mathrm{d}\nu)$

X = discrete set, ν counting measure \Rightarrow usual discrete setting

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

X = discrete set, ν counting measure \Rightarrow usual discrete setting

- $L^2(X, d\nu)$ becomes ℓ^2
- Frame = sequence $\Psi = (\psi_n, n \in \Gamma)$
- Analysis operator W_{Ψ} becomes $C : \mathcal{H} \to \ell^2 : C(f) = \{ \langle \psi_n, f \rangle, n \in \Gamma \}$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

X = discrete set, ν counting measure \Rightarrow usual discrete setting

- $L^2(X, d\nu)$ becomes ℓ^2
- Frame = sequence $\Psi = (\psi_n, n \in \Gamma)$
- Analysis operator W_{Ψ} becomes $C : \mathcal{H} \to \ell^2 : C(f) = \{ \langle \psi_n, f \rangle, n \in \Gamma \}$
- Synthesis operator $D:\ell^2
 ightarrow \mathcal{H}:$

$$D(c) = \sum_{n} c_n \psi_n, \quad c = (c_n)$$

• Then $D = C^*, \ C = D^*$, frame operator $S = C^*C$ reads

$$\mathcal{S} f = \sum_k \langle \psi_k, f
angle \psi_k, ext{ for all } f \in \mathcal{H}, \quad \langle f, \mathcal{S} f
angle = \sum_k |\langle \psi_k, f
angle|^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

X = discrete set, ν counting measure \Rightarrow usual discrete setting

- $L^2(X, d\nu)$ becomes ℓ^2
- Frame = sequence $\Psi = (\psi_n, n \in \Gamma)$
- Analysis operator W_{Ψ} becomes $C : \mathcal{H} \to \ell^2 : C(f) = \{ \langle \psi_n, f \rangle, n \in \Gamma \}$
- Synthesis operator $D:\ell^2 \to \mathcal{H}:$

$$D(c) = \sum_{n} c_n \psi_n, \quad c = (c_n)$$

• Then $D = C^*, \ C = D^*$, frame operator $S = C^*C$ reads

 $\mathcal{S}f = \sum_k \langle \psi_k, f
angle \, \psi_k, \,\, ext{for all} \,\,\, f \in \mathcal{H}, \,\,\,\,\, \langle f, \mathcal{S}f
angle = \sum_k |\langle \psi_k, f
angle|^2$

• For any operator *O*, denote $R_O := \operatorname{Ran}(O)$

 $\Rightarrow R_W \equiv \mathsf{Ran}(W_\Psi) \text{ becomes } R_C := \mathsf{Ran}(C) \subset \ell^2, \, R_D \subset \mathcal{H}, \, R_S \subset \mathcal{H}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

X = discrete set, ν counting measure \Rightarrow usual discrete setting

- $L^2(X, d\nu)$ becomes ℓ^2
- Frame = sequence $\Psi = (\psi_n, n \in \Gamma)$
- Analysis operator W_Ψ becomes C : H → ℓ² : C(f) = {⟨ψ_n, f⟩, n ∈ Γ}
- Synthesis operator $D:\ell^2 \to \mathcal{H}:$

$$D(c) = \sum_{n} c_n \psi_n, \quad c = (c_n)$$

• Then $D = C^*, \ C = D^*$, frame operator $S = C^*C$ reads

 $\mathcal{S}f = \sum_k \langle \psi_k, f
angle \, \psi_k, \,\, ext{for all} \,\,\, f \in \mathcal{H}, \,\,\,\,\, \langle f, \mathcal{S}f
angle = \sum_k |\langle \psi_k, f
angle|^2$

• For any operator O, denote $R_O := \operatorname{Ran}(O)$

 $\Rightarrow R_W \equiv \mathsf{Ran}(W_\Psi) \text{ becomes } R_C := \mathsf{Ran}(C) \subset \ell^2, R_D \subset \mathcal{H}, R_S \subset \mathcal{H}$

• The new inner product on R_C reads

$$\langle c, d \rangle_{\Psi} = \langle c, CS^{-1}C^{-1}d \rangle_{\ell^2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

X = discrete set, ν counting measure \Rightarrow usual discrete setting

- $L^2(X, d\nu)$ becomes ℓ^2
- Frame = sequence $\Psi = (\psi_n, n \in \Gamma)$
- Analysis operator W_{Ψ} becomes $C : \mathcal{H} \to \ell^2 : C(f) = \{ \langle \psi_n, f \rangle, n \in \Gamma \}$
- Synthesis operator $D:\ell^2 \to \mathcal{H}:$

$$D(c) = \sum_{n} c_n \psi_n, \quad c = (c_n)$$

• Then $D = C^*, \ C = D^*$, frame operator $S = C^*C$ reads

• For any operator O, denote $R_O := \operatorname{Ran}(O)$

 $\Rightarrow R_W \equiv \mathsf{Ran}(W_\Psi) \text{ becomes } R_C := \mathsf{Ran}(C) \subset \ell^2, R_D \subset \mathcal{H}, R_S \subset \mathcal{H}$

• The new inner product on R_C reads

$$\langle c, d \rangle_{\Psi} = \langle c, CS^{-1}C^{-1}d \rangle_{\ell^2}$$

• Note : same definitions hold if Ψ is only a Bessel sequence

Discrete frames

Summary of known results :

Theorem

Let $\Psi = (\psi_k)$ be a frame in \mathcal{H} , with analysis operator $C : \mathcal{H} \to \ell^2$, synthesis operator $D : \ell^2 \to \mathcal{H}$ and frame operator $S : \mathcal{H} \to \mathcal{H}$. Then:

(1) Ψ is total in \mathcal{H}

Discrete frames

Summary of known results :

Theorem

Let $\Psi = (\psi_k)$ be a frame in \mathcal{H} , with analysis operator $C : \mathcal{H} \to \ell^2$, synthesis operator $D : \ell^2 \to \mathcal{H}$ and frame operator $S : \mathcal{H} \to \mathcal{H}$. Then:

(1) Ψ is total in \mathcal{H}

(2) R_C is a closed subspace of ℓ². The analysis operator C is a unitary operator from H onto R_C, if R_C is equipped with the inner product (c, d)_Ψ = (c, CS⁻¹C⁻¹d)_{ℓ²}. This is a Hilbert space denoted by 𝔅_Ψ

Summary of known results :

Theorem

Let $\Psi = (\psi_k)$ be a frame in \mathcal{H} , with analysis operator $C : \mathcal{H} \to \ell^2$, synthesis operator $D : \ell^2 \to \mathcal{H}$ and frame operator $S : \mathcal{H} \to \mathcal{H}$. Then:

(1) Ψ is total in \mathcal{H}

- (2) R_C is a closed subspace of ℓ². The analysis operator C is a unitary operator from H onto R_C, if R_C is equipped with the inner product (c, d)_Ψ = (c, CS⁻¹C⁻¹d)_{ℓ²}. This is a Hilbert space denoted by 𝔅_Ψ
- (3) The projection P_{Ψ} from ℓ^2 onto R_C is given by $P_{\Psi} = CS^{-1}D$. It is a matrix operator G, given by $\mathcal{G}_{k,l} = \langle \psi_k, S^{-1}\psi_l \rangle$

Summary of known results :

Theorem

Let $\Psi = (\psi_k)$ be a frame in \mathcal{H} , with analysis operator $C : \mathcal{H} \to \ell^2$, synthesis operator $D : \ell^2 \to \mathcal{H}$ and frame operator $S : \mathcal{H} \to \mathcal{H}$. Then:

- (1) Ψ is total in \mathcal{H}
- (2) R_C is a closed subspace of ℓ². The analysis operator C is a unitary operator from H onto R_C, if R_C is equipped with the inner product (c, d)_Ψ = (c, CS⁻¹C⁻¹d)_{ℓ²}. This is a Hilbert space denoted by 𝔅_Ψ
- (3) The projection P_{Ψ} from ℓ^2 onto R_C is given by $P_{\Psi} = CS^{-1}D$. It is a matrix operator G, given by $\mathcal{G}_{k,l} = \langle \psi_k, S^{-1}\psi_l \rangle$
- (4) \mathfrak{H}_{Ψ} is a reproducing kernel Hilbert space with kernel given by the matrix $\mathcal{G}_{k,l} = \langle \psi_k, S^{-1} \psi_l \rangle$

Summary of known results :

Theorem

Let $\Psi = (\psi_k)$ be a frame in \mathcal{H} , with analysis operator $C : \mathcal{H} \to \ell^2$, synthesis operator $D : \ell^2 \to \mathcal{H}$ and frame operator $S : \mathcal{H} \to \mathcal{H}$. Then:

- (1) Ψ is total in \mathcal{H}
- (2) R_C is a closed subspace of ℓ². The analysis operator C is a unitary operator from H onto R_C, if R_C is equipped with the inner product (c, d)_Ψ = (c, CS⁻¹C⁻¹d)_{ℓ²}. This is a Hilbert space denoted by 𝔅_Ψ
- (3) The projection P_{Ψ} from ℓ^2 onto R_C is given by $P_{\Psi} = CS^{-1}D$. It is a matrix operator G, given by $\mathcal{G}_{k,l} = \langle \psi_k, S^{-1}\psi_l \rangle$
- (4) \mathfrak{H}_{Ψ} is a reproducing kernel Hilbert space with kernel given by the matrix $\mathcal{G}_{k,l} = \langle \psi_k, S^{-1} \psi_l \rangle$
- (5) *C* is unitary as operator on \mathfrak{H}_{Ψ} , and so can be inverted on its range by its adjoint, to get the reconstruction formula

$$0 < \sum_{n \in \Gamma} |\langle \psi_n, f \rangle|^2 \leqslant \mathsf{M} \|f\|^2, \forall f \in \mathcal{H}, \, f \neq 0$$

 $\Leftrightarrow \ \Psi \ \text{is a total Bessel sequence}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

$$0 < \sum_{n \in \Gamma} |\langle \psi_n, f \rangle|^2 \leqslant \mathsf{M} \|f\|^2, \forall f \in \mathcal{H}, f \neq 0$$

 $\Leftrightarrow \ \Psi \ \text{is a total Bessel sequence}$

For the standard operators, one has :

Lemma

Let Ψ be an unbounded frame. Then,

- The analysis operator C is injective and bounded
- The synthesis operator D is bounded with dense range

- 4 回 ト 4 三 ト 4 三 ト

э

$$0 < \sum_{n \in \Gamma} |\langle \psi_n, f \rangle|^2 \leqslant \mathsf{M} \|f\|^2, \forall f \in \mathcal{H}, f \neq 0$$

 $\Leftrightarrow \ \Psi \ \text{is a total Bessel sequence}$

For the standard operators, one has :

Lemma

Let Ψ be an unbounded frame. Then,

- The analysis operator C is injective and bounded
- The synthesis operator D is bounded with dense range
- The frame operator $S = C^*C$ is bounded, self-adjoint and positive
- *S*⁻¹ is densely defined, self-adjoint and positive.

- 4 回 ト 4 ヨ ト 4 ヨ ト

$$0 < \sum_{n \in \Gamma} |\langle \psi_n, f \rangle|^2 \leqslant \mathsf{M} \|f\|^2, \forall f \in \mathcal{H}, f \neq 0$$

 $\Leftrightarrow \ \Psi \text{ is a total Bessel sequence}$

For the standard operators, one has :

Lemma

Let Ψ be an unbounded frame. Then,

- The analysis operator C is injective and bounded
- The synthesis operator D is bounded with dense range
- The frame operator $S = C^*C$ is bounded, self-adjoint and positive
- *S*⁻¹ is densely defined, self-adjoint and positive.

• $R_C^{\Psi} \subseteq R_C \subseteq \overline{R_C}$, with dense inclusions, where $R_C^{\Psi} := C(R_S)$ and $\overline{R_C}$ denotes the closure of R_C in ℓ^2

・ロット (雪) (日) (日)

-

Theorem

- Define the operator $G_{\Psi}:R_{C}\rightarrow R_{C}^{\Psi}$ by $G_{\Psi}=CSC^{-1}.$
 - Then G_{Ψ} is bounded, positive and symmetric

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem

- Define the operator G_Ψ : R_C → R^Ψ_C by G_Ψ = CSC⁻¹. Then G_Ψ is bounded, positive and symmetric
- Define $G_{\Psi}^{-1} : R_C^{\Psi} \to R_C$ by $G_{\Psi}^{-1} = CS^{-1}C^{-1}$. Then G_{Ψ}^{-1} is positive and essentially self-adjoint.

- 本部 と 本語 と 本語 と 一語

Theorem

- Define the operator G_Ψ : R_C → R^Ψ_C by G_Ψ = CSC⁻¹. Then G_Ψ is bounded, positive and symmetric
- Define $G_{\Psi}^{-1} : R_C^{\Psi} \to R_C$ by $G_{\Psi}^{-1} = CS^{-1}C^{-1}$. Then G_{Ψ}^{-1} is positive and essentially self-adjoint.
- G_{Ψ} and G_{Ψ}^{-1} are bijective and inverse to each other.

- 本部 と 本語 と 本語 と 一語

Theorem

- Define the operator G_Ψ : R_C → R^Ψ_C by G_Ψ = CSC⁻¹. Then G_Ψ is bounded, positive and symmetric
- Define $G_{\Psi}^{-1} : R_C^{\Psi} \to R_C$ by $G_{\Psi}^{-1} = CS^{-1}C^{-1}$. Then G_{Ψ}^{-1} is positive and essentially self-adjoint.
- G_{Ψ} and G_{Ψ}^{-1} are bijective and inverse to each other.
- Let $G = \overline{G_{\Psi}}$. Then $G : \overline{R_C} \to R_G \subseteq R_C$ is bounded, self-adjoint and positive, and $G = CD|_{\overline{R_C}}$.

- 本間 と 本臣 と 本臣 と 一臣

Theorem

- Define the operator G_Ψ : R_C → R^Ψ_C by G_Ψ = CSC⁻¹. Then G_Ψ is bounded, positive and symmetric
- Define $G_{\Psi}^{-1} : R_C^{\Psi} \to R_C$ by $G_{\Psi}^{-1} = CS^{-1}C^{-1}$. Then G_{Ψ}^{-1} is positive and essentially self-adjoint.
- G_{Ψ} and G_{Ψ}^{-1} are bijective and inverse to each other.
- Let $G = \overline{G_{\Psi}}$. Then $G : \overline{R_C} \to R_G \subseteq R_C$ is bounded, self-adjoint and positive, and $G = CD|_{\overline{R_C}}$.
- Let $G^{-1} = \overline{G_{\Psi}^{-1}}$. Then $G^{-1} : D(G^{-1}) \subset \overline{R_C} \to \overline{R_C}$ is self-adjoint and positive, with domain $Dom(G^{-1}) = R_G = CR_D$.

白 医 不得 医 不良 医 不良 医二氏

Theorem

- Define the operator G_Ψ : R_C → R^Ψ_C by G_Ψ = CSC⁻¹. Then G_Ψ is bounded, positive and symmetric
- Define $G_{\Psi}^{-1} : R_C^{\Psi} \to R_C$ by $G_{\Psi}^{-1} = CS^{-1}C^{-1}$. Then G_{Ψ}^{-1} is positive and essentially self-adjoint.
- G_{Ψ} and G_{Ψ}^{-1} are bijective and inverse to each other.
- Let $G = \overline{G_{\Psi}}$. Then $G : \overline{R_C} \to R_G \subseteq R_C$ is bounded, self-adjoint and positive, and $G = CD|_{\overline{R_C}}$.
- Let $G^{-1} = \overline{G_{\Psi}^{-1}}$. Then $G^{-1} : D(G^{-1}) \subset \overline{R_C} \to \overline{R_C}$ is self-adjoint and positive, with domain $Dom(G^{-1}) = R_G = CR_D$.

Proof :

• First $G_{\Psi}^{-1} = C^{-1*}C^{-1}|_{R_C^{\Psi}}$ is symmetric, therefore closable, and positive.

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへで

Theorem

- Define the operator G_Ψ : R_C → R^Ψ_C by G_Ψ = CSC⁻¹. Then G_Ψ is bounded, positive and symmetric
- Define $G_{\Psi}^{-1} : R_C^{\Psi} \to R_C$ by $G_{\Psi}^{-1} = CS^{-1}C^{-1}$. Then G_{Ψ}^{-1} is positive and essentially self-adjoint.
- G_{Ψ} and G_{Ψ}^{-1} are bijective and inverse to each other.
- Let $G = \overline{G_{\Psi}}$. Then $G : \overline{R_C} \to R_G \subseteq R_C$ is bounded, self-adjoint and positive, and $G = CD|_{\overline{R_C}}$.
- Let $G^{-1} = \overline{G_{\Psi}^{-1}}$. Then $G^{-1} : D(G^{-1}) \subset \overline{R_C} \to \overline{R_C}$ is self-adjoint and positive, with domain $Dom(G^{-1}) = R_G = CR_D$.

Proof :

- First $G_{\Psi}^{-1} = C^{-1*}C^{-1}|_{R_C^{\Psi}}$ is symmetric, therefore closable, and positive.
- Then G_{Ψ}^{-1} has defect indices (0,0) and thus is essentially self-adjoint.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

Theorem

- Define the operator G_Ψ : R_C → R^Ψ_C by G_Ψ = CSC⁻¹. Then G_Ψ is bounded, positive and symmetric
- Define $G_{\Psi}^{-1} : R_C^{\Psi} \to R_C$ by $G_{\Psi}^{-1} = CS^{-1}C^{-1}$. Then G_{Ψ}^{-1} is positive and essentially self-adjoint.
- G_{Ψ} and G_{Ψ}^{-1} are bijective and inverse to each other.
- Let $G = \overline{G_{\Psi}}$. Then $G : \overline{R_C} \to R_G \subseteq R_C$ is bounded, self-adjoint and positive, and $G = CD|_{\overline{R_C}}$.
- Let $G^{-1} = \overline{G_{\Psi}^{-1}}$. Then $G^{-1} : D(G^{-1}) \subset \overline{R_C} \to \overline{R_C}$ is self-adjoint and positive, with domain $Dom(G^{-1}) = R_G = CR_D$.

Proof :

- First $G_{\Psi}^{-1} = C^{-1*}C^{-1}|_{R_C^{\Psi}}$ is symmetric, therefore closable, and positive.
- Then G_{Ψ}^{-1} has defect indices (0,0) and thus is essentially self-adjoint.
- G⁻¹ is positive, since its inverse G is bounded and thus the spectrum of G⁻¹ is bounded away from 0.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

• Putting everything together, we have the following diagram :

- 4 個 ト 4 ヨ ト 4 ヨ ト

• Putting everything together, we have the following diagram :

• Since G^{-1} is self-adjoint and positive, the inner product

$$\langle c,d \rangle_{\Psi} = \langle c,G^{-1}d \rangle_{\ell^2}$$

makes sense on R_{C}^{Ψ}

イロト 不得 トイヨト イヨト

• Putting everything together, we have the following diagram :

• Since G^{-1} is self-adjoint and positive, the inner product

$$\langle c,d \rangle_{\Psi} = \langle c,G^{-1}d \rangle_{\ell^2}$$

makes sense on R_C^{Ψ}

• Define the Hilbert space $\mathfrak{H}_{\Psi} := \overline{R_{\mathcal{C}}^{\Psi}}^{\Psi}$ (completion in norm $\| \cdot \|_{\Psi}$)

Fundamental result :

Theorem

Let the Hilbert space \mathfrak{H}_{Ψ} be defined as above. Then :

Fundamental result :

Theorem

Let the Hilbert space \mathfrak{H}_{Ψ} be defined as above. Then :

(1) \mathfrak{H}_{Ψ} coincides with R_C and $C : \mathcal{H} \to \mathfrak{H}_{\Psi}$ is an isomorphism (unitary map).

Fundamental result :

Theorem

Let the Hilbert space \mathfrak{H}_{Ψ} be defined as above. Then :

- (1) \mathfrak{H}_{Ψ} coincides with R_C and $C : \mathcal{H} \to \mathfrak{H}_{\Psi}$ is an isomorphism (unitary map).
- (2) The norm $||.||_{\Psi}$ is equivalent to the graph norm of $G^{-1/2}$ and, therefore, $Dom(G^{-1/2}) = \mathfrak{H}_{\Psi}.$

Fundamental result :

Theorem

Let the Hilbert space \mathfrak{H}_Ψ be defined as above. Then :

- (1) \mathfrak{H}_{Ψ} coincides with R_C and $C : \mathcal{H} \to \mathfrak{H}_{\Psi}$ is an isomorphism (unitary map).
- (2) The norm $||.||_{\Psi}$ is equivalent to the graph norm of $G^{-1/2}$ and, therefore, $Dom(G^{-1/2}) = \mathfrak{H}_{\Psi}.$
- (3) $C : \mathcal{H} \to \mathfrak{H}_{\Psi}$ can be inverted on \mathfrak{H}_{Ψ} by its adjoint $C^{*(\Psi)} = S^{-1}D^{\uparrow}\mathfrak{H}_{\Psi}$, which yields the following reconstruction formula, for every $f \in R_S$,

$$f = C^{*(\Psi)}Cf = \left(S^{-1}D\right)Cf$$
Fundamental result :

Theorem

Let the Hilbert space \mathfrak{H}_{Ψ} be defined as above. Then :

- (1) \mathfrak{H}_{Ψ} coincides with R_C and $C : \mathcal{H} \to \mathfrak{H}_{\Psi}$ is an isomorphism (unitary map).
- (2) The norm ||.||_Ψ is equivalent to the graph norm of G^{-1/2} and, therefore, Dom(G^{-1/2}) = 𝔅_Ψ.
- (3) $C : \mathcal{H} \to \mathfrak{H}_{\Psi}$ can be inverted on \mathfrak{H}_{Ψ} by its adjoint $C^{*(\Psi)} = S^{-1}D^{\uparrow}\mathfrak{H}_{\Psi}$, which yields the following reconstruction formula, for every $f \in R_S$,

$$f = C^{*(\Psi)}Cf = \left(S^{-1}D\right)Cf$$

(4) For all $f \in R_S$, we also have

$$f = \sum_{k} \langle \psi_{k}, C^{*^{(\Psi)}} G^{-1} C f \rangle \psi_{k}$$

Fundamental result :

Theorem

Let the Hilbert space \mathfrak{H}_{Ψ} be defined as above. Then :

- (1) \mathfrak{H}_{Ψ} coincides with R_{C} and $C : \mathcal{H} \to \mathfrak{H}_{\Psi}$ is an isomorphism (unitary map).
- (2) The norm $\|.\|_{\Psi}$ is equivalent to the graph norm of $G^{-1/2}$ and, therefore, $Dom(G^{-1/2}) = \mathfrak{H}_{\Psi}$.
- (3) $C : \mathcal{H} \to \mathfrak{H}_{\Psi}$ can be inverted on \mathfrak{H}_{Ψ} by its adjoint $C^{*(\Psi)} = S^{-1}D^{\uparrow}\mathfrak{H}_{\Psi}$, which yields the following reconstruction formula, for every $f \in R_S$,

$$f = C^{*(\Psi)}Cf = \left(S^{-1}D\right)Cf$$

(4) For all $f \in R_S$, we also have

$$f = \sum_{k} \langle \psi_{k}, C^{*^{(\Psi)}} G^{-1} C f \rangle \psi_{k}$$

(5) For all $f \in R_D$, we have the alternative reconstruction formula

$$f = \sum_{k} \left[G^{-1} \left(\langle \psi_k, f \rangle_{\mathcal{H}} \right) \right] \psi_k$$

• Exactly as in the continuous case, we have the following diagram:

$$\begin{array}{ccc} \mathcal{H} & \stackrel{\mathcal{C}}{\longrightarrow} & \mathfrak{H}_{\Psi} = R_{\mathcal{C}} \subset \overline{R_{\mathcal{C}}} \subset \ell^{2} \\ \cup & & \cup \\ \mathsf{Dom}(S^{-1}) = R_{\mathcal{S}} & \stackrel{\mathcal{C}}{\longrightarrow} & R_{\mathcal{C}}^{\Psi} & \subset & \ell^{2} \end{array}$$

• Exactly as in the continuous case, we have the following diagram:

$$\begin{array}{ccc} \mathcal{H} & \stackrel{\mathcal{C}}{\longrightarrow} & \mathfrak{H}_{\Psi} = R_{\mathcal{C}} \subset \overline{R_{\mathcal{C}}} \subset \ell^{2} \\ \cup & & \cup \\ \mathbb{Dom}(S^{-1}) = R_{\mathcal{S}} & \stackrel{\mathcal{C}}{\longrightarrow} & R_{\mathcal{C}}^{\Psi} & \subset & \ell^{2} \end{array}$$

Corollary

 $G^{1/2}: \overline{R_C} \to \mathfrak{H}_{\Psi} \text{ is an isomorphism and so is its inverse } G^{-1/2}: \mathfrak{H}_{\Psi} \to \overline{R_C}.$

 In order to get a nice reproducing kernel, we have to assume Ψ to be regular. Indeed:

Theorem

Let (ψ_k) be a regular unbounded frame. Then \mathfrak{H}_{Ψ} is a reproducing kernel Hilbert space, with kernel given by the operator $S^{-1}D$, which is a matrix operator, given by the matrix \mathcal{G} , where

$$\mathcal{G}_{k,l} = \langle \psi_k, S^{-1}\psi_l \rangle = \langle \psi_k, C^{-1}G^{-1}C\psi_l \rangle.$$

 $\mathsf{Proof}: \ \mathsf{Let} \ \phi = \mathit{Cf} \in \mathfrak{H}_{\Psi}. \ \mathsf{Then,}$

$$\sum_{I} G_{k,I} \phi_{I} = \sum_{I} \langle \psi_{k}, S^{-1} \psi_{I} \rangle \phi_{I} = \langle \psi_{k}, S^{-1} \sum_{I} \psi_{I} \phi_{I} \rangle = \langle \psi_{k}, S^{-1} D \phi \rangle$$
$$= (CS^{-1} D \phi)_{k} = (CS^{-1} D C f)_{k} = (Cf)_{k} = \phi_{k}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Proof : Let $\phi = Cf \in \mathfrak{H}_{\Psi}$. Then,

$$\sum_{I} G_{k,I} \phi_{I} = \sum_{I} \langle \psi_{k}, S^{-1} \psi_{I} \rangle \phi_{I} = \langle \psi_{k}, S^{-1} \sum_{I} \psi_{I} \phi_{I} \rangle = \langle \psi_{k}, S^{-1} D \phi \rangle$$
$$= (CS^{-1} D \phi)_{k} = (CS^{-1} D C f)_{k} = (Cf)_{k} = \phi_{k}.$$

 If Ψ is not regular, we have to use a Gel'fand triplet as in the continuous case.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Proof : Let $\phi = Cf \in \mathfrak{H}_{\Psi}$. Then,

$$\sum_{I} G_{k,I} \phi_{I} = \sum_{I} \langle \psi_{k}, S^{-1} \psi_{I} \rangle \phi_{I} = \langle \psi_{k}, S^{-1} \sum_{I} \psi_{I} \phi_{I} \rangle = \langle \psi_{k}, S^{-1} D \phi \rangle$$
$$= (CS^{-1} D \phi)_{k} = (CS^{-1} D C f)_{k} = (Cf)_{k} = \phi_{k}.$$

- If Ψ is not regular, we have to use a Gel'fand triplet as in the continuous case.
- Conclusion : everything works as usual, including reconstruction, provided Ψ is regular, i.e. $\psi_n \in \text{Dom}(S^{-1}), \forall n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

• Let (e_k) be an ONB in \mathcal{H} with index set \mathbb{N} . Let $\psi_k = \frac{1}{k}e_k$. Then (ψ_k) is an unbounded frame :

$$0 < \sum_{k} |\langle \psi_k, f \rangle|^2 \leqslant \sum_{k} |\langle e_k, f \rangle|^2 = ||f||^2$$

The lower bound is 0, since for $f = e_p$, one has $\sum_k |\langle \psi_k, f \rangle|^2 = rac{1}{p^2}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Let (e_k) be an ONB in \mathcal{H} with index set \mathbb{N} . Let $\psi_k = \frac{1}{k}e_k$. Then (ψ_k) is an unbounded frame :

$$0 < \sum_{k} |\langle \psi_k, f \rangle|^2 \leqslant \sum_{k} |\langle e_k, f \rangle|^2 = ||f||^2$$

The lower bound is 0, since for $f = e_p$, one has $\sum_k |\langle \psi_k, f \rangle|^2 = rac{1}{p^2}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Let (e_k) be an ONB in \mathcal{H} with index set \mathbb{N} . Let $\psi_k = \frac{1}{k}e_k$. Then (ψ_k) is an unbounded frame :

$$0 < \sum_k |\langle \psi_k, f \rangle|^2 \leqslant \sum_k |\langle e_k, f \rangle|^2 = \|f\|^2$$

The lower bound is 0, since for $f = e_p$, one has $\sum_k |\langle \psi_k, f \rangle|^2 = \frac{1}{p^2}$

• Let $\phi_k = k e_k$: the sequence (ϕ_k) is dual to (ψ_k) , since one has

$$\sum_{k} \langle \psi_k, f \rangle \phi_k = f$$

This is the unbounded dual frame, living in $\mathfrak{H}_{\Psi}^{\times}$

Discrete unbounded frames - Example - 2

In this case, the frame operator is S = diag(¹/_k) and S⁻¹ = diag(k), so that the inner products are, respectively :

• For
$$\mathfrak{H}_{\Psi}$$
: $\langle c, d \rangle_{\Psi} = \sum_{k} k \, \overline{c_k} \, d_k$

• For \mathfrak{H}_0 : $\langle c, d \rangle_0 = \sum_k \overline{c_k} d_k$

• For
$$\mathfrak{H}_{\Psi}^{\times}$$
: $\langle c, d \rangle_{\Psi}^{\times} = \sum_{k} \frac{1}{k} \overline{c_{k}} d_{k}$

In this case, the frame operator is S = diag(¹/_k) and S⁻¹ = diag(k), so that the inner products are, respectively :

• For
$$\mathfrak{H}_{\Psi}$$
: $\langle c, d \rangle_{\Psi} = \sum_{k} k \, \overline{c_k} \, d_k$

• For
$$\mathfrak{H}_0$$
: $\langle c, d \rangle_0 = \sum_k \overline{c_k} d_k$

• For
$$\mathfrak{H}_{\Psi}^{\times}$$
: $\langle c, d \rangle_{\Psi}^{\times} = \sum_{k} \frac{1}{k} \overline{c_{k}} d_{k}$

• The sequence used by Gabor in his original IEE-paper, a Gabor system with a Gaussian window, a = 1 and b = 1, is exactly such a unbounded frame

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

In this case, the frame operator is S = diag(¹/_k) and S⁻¹ = diag(k), so that the inner products are, respectively :

• For
$$\mathfrak{H}_{\Psi}$$
 : $\langle c, d \rangle_{\Psi} = \sum_k k \, \overline{c_k} \, d_k$

• For
$$\mathfrak{H}_0$$
: $\langle c, d \rangle_0 = \sum_k \overline{c_k} d_k$

• For
$$\mathfrak{H}_{\Psi}^{\times}$$
: $\langle c, d \rangle_{\Psi}^{\times} = \sum_{k} \frac{1}{k} \overline{c_{k}} d_{k}$

- The sequence used by Gabor in his original IEE-paper, a Gabor system with a Gaussian window, a = 1 and b = 1, is exactly such a unbounded frame
- Generalization :
 - $(m_n e_n)$, where $m \in \ell^{\infty}$ has a subsequence converging to zero and $m_n \neq 0, \forall n$: an unbounded frame, not a frame
 - $\left(\frac{1}{m_n}e_n\right)$: satisfies the lower frame condition, but is not Bessel.

・ロン ・ 理 と ・ ヨ と ・ ヨ ・ うくで

• In the general case, we have only weak convergence of integrals, in particular, the reconstruction formula

Duality - 1

- In the general case, we have only weak convergence of integrals, in particular, the reconstruction formula
- Here, for sequences, we want more : series expansions, preferably with unconditional convergence

Duality - 1

- In the general case, we have only weak convergence of integrals, in particular, the reconstruction formula
- Here, for sequences, we want more : series expansions, preferably with unconditional convergence
- Series expansions for a frame Φ :

$$f = \sum \langle \phi_n, f \rangle \, \psi_n = \sum \langle \psi_n, f \rangle \, \phi_n, \, \forall \, f \in \mathcal{H}, \ \text{ via some sequence } \Psi$$

Duality - 1

- In the general case, we have only weak convergence of integrals, in particular, the reconstruction formula
- Here, for sequences, we want more : series expansions, preferably with unconditional convergence
- Series expansions for a frame Φ :

$$f = \sum \langle \phi_n, f \rangle \, \psi_n = \sum \langle \psi_n, f \rangle \, \phi_n, \, \forall \, f \in \mathcal{H}, \, \text{ via some sequence } \Psi$$

• In the unbounded case :

Lemma

Let Φ be a Bessel sequence in \mathcal{H} . If there exists Ψ such that (at least) one of the following three conditions hold:

(a1)
$$\sum_{n} \langle \psi_{n}, f \rangle \phi_{n} = f, \forall f \in \mathcal{H}$$

(a₂) $\sum_{n} \langle \phi_n, f \rangle \psi_n = f$ with unconditional convergence of the series for every $f \in \mathcal{H}$

(a₃) $\sum_{n} \langle \phi_n, f \rangle \psi_n = f$, $\forall f \in \mathcal{H}$, and $\sum_{n} \langle \psi_n, f \rangle \phi_n$ converges for all $f \in \mathcal{H}$

then Φ is an unbounded frame for ${\mathcal H}$ and Ψ satisfies the lower frame condition.

・ロト ・ 四ト ・ ヨト ・ ヨト

Ξ 9 Q (P

- This suggests a kind of duality
 - Ψ = frame with bounds (m, M)

 $\Leftrightarrow\,$ canonical dual $\widetilde{\Psi}=$ frame with bounds (M^{-1},m^{-1})

イロト 不得 トイヨト イヨト

= na<</p>

• Ψ = frame with bounds (m, M)

 $\Leftrightarrow \text{ canonical dual } \widetilde{\Psi} = \text{frame with bounds } (\mathsf{M}^{-1},\mathsf{m}^{-1})$

• Unbounded frame $\Psi \simeq {\sf m} = {\sf 0} \Rightarrow ~S$ bounded, S^{-1} unbounded

・ロト ・ 同ト ・ ヨト ・ ヨト

= 900

•
$$\Psi$$
= frame with bounds (m, M)

 $\Leftrightarrow\,$ canonical dual $\widetilde{\Psi}=$ frame with bounds (M^{-1},m^{-1})

• Unbounded frame
$$\Psi \simeq {\sf m} = {\sf 0} \Rightarrow \; S$$
 bounded, S^{-1} unbounded

• 'Dual'
$$\widetilde{\Psi}$$
 = sequence satisfying the lower frame condition
 \Rightarrow *S* unbounded, *S*⁻¹ bounded

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• Ψ = frame with bounds (m, M)

 \Leftrightarrow canonical dual $\widetilde{\Psi}$ = frame with bounds (M⁻¹, m⁻¹)

• Unbounded frame $\Psi \simeq \mathsf{m} = \mathsf{0} \Rightarrow S$ bounded, S^{-1} unbounded

• 'Dual'
$$\widetilde{\Psi}$$
 = sequence satisfying the lower frame condition
 \Rightarrow *S* unbounded. *S*⁻¹ bounded

- From exact results, there is duality between
 - Unbounded frames = complete Bessel sequences
 - Complete sequences satisfying the lower frame condition
- \Rightarrow various series expansions, with appropriate convergence

(日本)(四本)(日本)(日本)

- A set of vectors $\eta_x^i \in \mathfrak{H}$, $i = 1, 2, ..., n < \infty$, $x \in X$, is a rank n frame $\mathcal{F} = \mathcal{F}\{\eta_x^i, S, n\}$ if
 - (i) for all $x \in X$, $\{\eta^i_x, i = 1, 2, \dots, n\}$ is a linearly independent set
 - (ii) there exists a positive operator $S \in GL(\mathfrak{H})$ such that, with weak convergence,

$$\sum_{i=1}^n \int_X |\eta_x^i\rangle \langle \eta_x^i| \, \mathrm{d}\nu(x) := \int_X \Lambda(x) \, \mathrm{d}\nu(x) = S$$

 $(\Lambda(x) = \text{positive, operator valued function on } X)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

- A set of vectors $\eta_x^i \in \mathfrak{H}$, $i = 1, 2, ..., n < \infty$, $x \in X$, is a rank n frame $\mathcal{F} = \mathcal{F}\{\eta_x^i, S, n\}$ if
 - (i) for all $x \in X$, $\{\eta^i_x, i = 1, 2, \dots, n\}$ is a linearly independent set
 - (ii) there exists a positive operator $S \in GL(\mathfrak{H})$ such that, with weak convergence,

$$\sum_{i=1}^n \int_X |\eta_x^i\rangle \langle \eta_x^i| \, \mathrm{d}\nu(x) := \int_X \Lambda(x) \, \mathrm{d}\nu(x) = S$$

 $(\Lambda(x) = \text{positive, operator valued function on } X)$

 \Rightarrow various notions of equivalence of frames

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- A set of vectors $\eta_x^i \in \mathfrak{H}$, $i = 1, 2, ..., n < \infty$, $x \in X$, is a rank n frame $\mathcal{F} = \mathcal{F}{\{\eta_x^i, S, n\}}$ if
 - (i) for all $x \in X$, $\{\eta^i_x, i=1,2,\ldots,n\}$ is a linearly independent set
 - (ii) there exists a positive operator $S \in GL(\mathfrak{H})$ such that, with weak convergence,

$$\sum_{i=1}^n \int_X |\eta_x^i\rangle \langle \eta_x^i| \, \mathrm{d}\nu(x) := \int_X \Lambda(x) \, \mathrm{d}\nu(x) = S$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 $(\Lambda(x) = \text{positive, operator valued function on } X)$

- \Rightarrow various notions of equivalence of frames
- Further generalization : weighted rank *n* frames frames (*g*-frames)

- A set of vectors $\eta_x^i \in \mathfrak{H}$, $i = 1, 2, ..., n < \infty$, $x \in X$, is a rank n frame $\mathcal{F} = \mathcal{F}{\{\eta_x^i, S, n\}}$ if
 - (i) for all $x \in X$, $\{\eta^i_x, i=1,2,\ldots,n\}$ is a linearly independent set
 - (ii) there exists a positive operator $S \in GL(\mathfrak{H})$ such that, with weak convergence,

$$\sum_{i=1}^n \int_X |\eta_x^i\rangle \langle \eta_x^i| \, \mathrm{d}\nu(x) := \int_X \Lambda(x) \, \mathrm{d}\nu(x) = S$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $(\Lambda(x) = \text{positive, operator valued function on } X)$

 \Rightarrow various notions of equivalence of frames

- Further generalization : weighted rank n frames frames (g-frames)
- For n > 1, connection with fusion frames ?

- A set of vectors $\eta_x^i \in \mathfrak{H}$, $i = 1, 2, ..., n < \infty$, $x \in X$, is a rank n frame $\mathcal{F} = \mathcal{F}{\{\eta_x^i, S, n\}}$ if
 - (i) for all $x \in X$, $\{\eta^i_x, i=1,2,\ldots,n\}$ is a linearly independent set
 - (ii) there exists a positive operator $S \in GL(\mathfrak{H})$ such that, with weak convergence,

$$\sum_{i=1}^n \int_X |\eta_x^i\rangle \langle \eta_x^i| \, \mathrm{d}\nu(x) := \int_X \Lambda(x) \, \mathrm{d}\nu(x) = S$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

 $(\Lambda(x) = \text{positive, operator valued function on } X)$

 \Rightarrow various notions of equivalence of frames

- Further generalization : weighted rank *n* frames frames (g-frames)
- For n > 1, connection with fusion frames ?
- Connection with frame multipliers ?

- S.T. Ali, J-P. Antoine, and J-P. Gazeau, Square integrability of group representations on homogeneous spaces I. Reproducing triples and frames, *Ann. Inst. H. Poincaré* **55** (1991) 829–856
- S.T. Ali, J-P. Antoine, and J-P. Gazeau, Continuous frames in Hilbert space, *Annals of Physics* **222** (1993) 1–37
- S.T. Ali, J-P. Antoine, and J-P. Gazeau, *Coherent States, Wavelets and Their Generalizations*, Springer-Verlag, New York, Berlin, Heidelberg, 2000, Sec.7.3
- J-P. Antoine, P. Balazs, and D. Stoeva, Unbounded frames, preprint in preparation (work in progress in the framework of MULAC)