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Problem setting
Normal offsets

Normal mesh triangulations and polynomial wavelets

Special images and wavelets
Many alternatives

Horizon images, the class H

Hα = {c : [0, 1]→ R : |Dsc(x)− Dsc(x ′)| ≤ Cα|x − x ′|α−s},
s = bαc (Hölder class).

PSα,β = {f : [0, 1]2 → R, f ∈ Hβ, if y 6= c(x), c ∈ Hα}
(piecewise smooth) α, β ∈ (1, 2]

Hα = {f : [0, 1]2 → {0, 1} :
f (x , y) = 1, if y ≤ c(x), 0 otherwise, c ∈ Hα}
(horizon class, α ∈ (1, 2], most often α = 2, then we write H)
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Problem setting
Normal offsets

Normal mesh triangulations and polynomial wavelets

Special images and wavelets
Many alternatives

Problem with dyadic wavelet approximation

Large number of dyadic squares of size 2−j that intersect the
curve c(t).

Slow decay of wavelet coefficients.

Taking n largest wavelet coefficients gives approximant fn
and ‖f − fn‖2 = O(n−1/2)

while wavelet approximation of c ∈ C 2 decays like O(n−2)

(Classical) wavelets are good for point singularities, but
behave poorly on line singularities
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Special images and wavelets
Many alternatives

Many alternatives

A multitude of techniques and -lets.
Optimize cvg rate of best approximation with n parameters in a
class (α = 2).

Ridgelets (Donoho)

Curvelets/Contourlets (Candès, Donoho) O(n−2 log n)

Wedgelets (Donoho) O(n−2) + δ (δ angular resolution)

Dictionaries (e.g. Basis pursuit and matching pursuit)

Bandelets (Mallat) (wavelets adapted to geometric contents)

Domain partitioning (edge detection and segmentation)

Binary space partitioning (e.g. geometric wavelets)

Adaptive thinning (adaptive thinning of triangular mesh)
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Computer graphics
Normal offset in 1D
Normal offset in 2D

Some terminology

A method with origins in computer graphics

Pixel values = z-coordinate, then image = object

triangulation of image = triangular mesh on the object

However in CG the objects are smooth
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Normal offsets in 1D

normal bisector

piercing point → normal offset

defines refinement

discontinuity rapidly detected

vertical vs. normal offset
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Problem setting
Normal offsets

Normal mesh triangulations and polynomial wavelets

Computer graphics
Normal offset in 1D
Normal offset in 2D

Normal offsets for a smooth curve

Normal offsets generate a regular grid on a smooth function.
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Normal offsets

Normal mesh triangulations and polynomial wavelets

Computer graphics
Normal offset in 1D
Normal offset in 2D

Dyadic subdivision and singularity

Dyadic subdivision needs ‘infinitely many’ steps to locate the
singularity.
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Computer graphics
Normal offset in 1D
Normal offset in 2D

Normal offsets in 2D

Not a normal in the centers of the triangles of the object mesh

A normal bisector for every edge in that mesh in a vertical
plane though that edge.

In that plane you do the 1D-case, with projections of the
piercing points giving a subdivision point on every edge of the
triangulation
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Normal mesh triangulations and polynomial wavelets

Computer graphics
Normal offset in 1D
Normal offset in 2D

Possible splits

Need to take the best possible split into 4 finer triangles.

Take the one that gives the smallest polynomial
approximation error
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Normal mesh triangulations and polynomial wavelets

Computer graphics
Normal offset in 1D
Normal offset in 2D

Possible splits

class H
Rule of thumb:
choose the one
giving the least
possible
intersections with
the discontinuity.

Gray triangles need
subdivision.
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Normal mesh triangulations and polynomial wavelets

Computer graphics
Normal offset in 1D
Normal offset in 2D

Possible splits

Left: regular subdivision; Right: adaptive subdivision

Right has less intersections with singularity contour

Adhemar Bultheel Geometric image approximation

http://www.cs.kuleuven.ac.be/~ade/


Problem setting
Normal offsets

Normal mesh triangulations and polynomial wavelets

Computer graphics
Normal offset in 1D
Normal offset in 2D

Possible splits

Left: regular subdivision; Right: adaptive subdivision

Right has less intersections with singularity contour

Adhemar Bultheel Geometric image approximation

http://www.cs.kuleuven.ac.be/~ade/


Problem setting
Normal offsets

Normal mesh triangulations and polynomial wavelets

Polynomial wavelets
Tree pruning
Encoding

Update: polynomial wavelet

Interpolating mesh gives poor approximation

P∆= best polynomial approximation on triangle ∆
If ∆ is a subtriangle of ∆′, then the geometric wavelet is
ψ∆ = P∆ − P∆′ restricted to ∆. [Dekel & Leviatan]

We define ψ∆ = P∆ − Q∆ where Q∆ ∈ Π2 is an interpolating
polynomial (comes for free).
The wavelets are the detail info to be added to the object
mesh.
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Normal mesh triangulations and polynomial wavelets

Polynomial wavelets
Tree pruning
Encoding

Tree pruning

Successive subtriangulations = graph

Nodes = subdivision (geometric) data + detail info (wavelets)

Pruning = cut away the less important branches
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Problem setting
Normal offsets

Normal mesh triangulations and polynomial wavelets

Polynomial wavelets
Tree pruning
Encoding

Tree pruning

min ‖f − f̃n‖, f̃n ←
∑

t∈`(S)

Q∆(t) +
∑

t∈`(S)

ψ∆(t)

S subtree

t nodes of tree

`(S) leaves of tree S

∆(t) triangle at node t

Q∆(t) (linear) interpolating polynomial on ∆(t)

ψ∆(t) polynomial (least squares) wavelet on ∆(t)

Note: there can be a wavelet at every node but generated
from leave-wavelets
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Problem setting
Normal offsets

Normal mesh triangulations and polynomial wavelets

Polynomial wavelets
Tree pruning
Encoding

Optimal tree pruning (no ψ∆(t))

Define

R(S) monotonically increasing bit-rate functional on (sub)tree S

D(S) monotonically decreasing distortion functional on (sub)tree S

Prune S such that minS D(S) + λ(R(S)− Rbudget),
(λ regularization parameter)

i.e., minf̃ D(f̃ ) such that R(f̃ ) ≤ Rbudget
1

Optimal S for given λ by top-down pruning in linear time
(in N = #nodes).

Iteration on λ to approach Rbudget

Complexity O(N logN)

1Chou, Lookabaugh, Gray (1989)
Adhemar Bultheel Geometric image approximation
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Problem setting
Normal offsets

Normal mesh triangulations and polynomial wavelets

Polynomial wavelets
Tree pruning
Encoding

Optimal tree pruning (with normal offsets, wavelets and
quantization)

Recall a wavelet at every node, but only encoded in the leaves.
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Refinement cost function Rθ(t) (normal offsets + tesselation)
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t∈S\`(S) Rθ(t)

Quantization cost: Rq(St) =
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l∈`(St) Rq(l)− Rq(t)

Total cost for St : R(St) = Rθ(St) + Rq(St).
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Problem setting
Normal offsets

Normal mesh triangulations and polynomial wavelets

Polynomial wavelets
Tree pruning
Encoding

Optimal tree pruning

Now we have a bit-rate function R(S) and a distortion function
Da(S) + Dq(S)

Prune over nested subtrees ∪t′∈`(St)∆(t ′) = ∆(t)

A one-bit decoration indicator whether or not to add a
wavelet at node t

functions no longer linear or monotone → optimal pruning
algorithm needs adaptation

Wavelets represented by Bernstein polynomials
ψ∆(x , y) =

∑
|i |=1 biBi (z , y)
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Encoding

What needs encoding?

tree structure of S

the partition of each triangle (points on edges)

the type of partitioning for each triangle

coefficients of polynomials ψ∆ for leaf nodes
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Problems with digital images
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Encoding

Statistics of offsets for uniform distribution of singularity to
assign bits and bins.
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Encoding

51% wavelets

26% normal offsets

19% tree

4% triangular splits

meta data
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Pruning effect
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