Geometric image approximation

Adhemar Bultheel

Department of Computer Science K.U.Leuven

Wavelets and fractals Esneux, April 26-28, 2010

・ロン ・回 と ・ ヨ と ・ ヨ と …

臣

Survey

- Motivation and problem setting
- Normal offsets in 1D and 2D
- Decoration with polynomial wavelets
- tree pruning and encoding
- Experimental results

E

Special images and wavelets Many alternatives

Horizon images, the class ${\cal H}$

 $H^{\alpha} = \{ c : [0,1] \to \mathbb{R} : |D^{s}c(x) - D^{s}c(x')| \le C_{\alpha}|x - x'|^{\alpha - s} \}, \\ s = \lfloor \alpha \rfloor \text{ (Hölder class)}.$

- $\mathcal{PS}^{\alpha,\beta} = \{f : [0,1]^2 \to \mathbb{R}, f \in H^{\beta}, \text{ if } y \neq c(x), c \in H^{\alpha}\}$ (piecewise smooth) $\alpha, \beta \in (1,2]$
- $\mathcal{H}^{\alpha} = \{f : [0,1]^2 \rightarrow \{0,1\} : f(x,y) = 1, \text{ if } y \leq c(x), 0 \text{ otherwise, } c \in H^{\alpha} \}$ (horizon class, $\alpha \in (1,2]$, most often $\alpha = 2$, then we write \mathcal{H})

(日) (종) (종) (종) (종)

Special images and wavelets Many alternatives

Horizon images, the class ${\cal H}$

■ $H^{\alpha} = \{ c : [0,1] \rightarrow \mathbb{R} : |D^{s}c(x) - D^{s}c(x')| \le C_{\alpha}|x - x'|^{\alpha - s} \}, s = \lfloor \alpha \rfloor$ (Hölder class).

- $\mathcal{PS}^{\alpha,\beta} = \{f : [0,1]^2 \to \mathbb{R}, f \in H^{\beta}, \text{ if } y \neq c(x), c \in H^{\alpha}\}$ (piecewise smooth) $\alpha, \beta \in (1,2]$
- $\mathcal{H}^{\alpha} = \{f : [0,1]^2 \rightarrow \{0,1\} : f(x,y) = 1, \text{if } y \leq c(x), 0 \text{ otherwise}, c \in H^{\alpha} \}$ (horizon class, $\alpha \in (1,2]$, most often $\alpha = 2$, then we write \mathcal{H})

(ロ) (同) (E) (E) (E)

Special images and wavelets Many alternatives

Horizon images, the class ${\cal H}$

- $H^{\alpha} = \{ c : [0,1] \rightarrow \mathbb{R} : |D^{s}c(x) D^{s}c(x')| \le C_{\alpha}|x x'|^{\alpha s} \}, s = \lfloor \alpha \rfloor$ (Hölder class).
- $\mathcal{PS}^{\alpha,\beta} = \{f : [0,1]^2 \to \mathbb{R}, f \in H^{\beta}, \text{ if } y \neq c(x), c \in H^{\alpha}\}$ (piecewise smooth) $\alpha, \beta \in (1,2]$
- $\mathcal{H}^{\alpha} = \{f : [0,1]^2 \rightarrow \{0,1\} : f(x,y) = 1, \text{if } y \leq c(x), 0 \text{ otherwise, } c \in H^{\alpha} \}$ (horizon class, $\alpha \in (1,2]$, most often $\alpha = 2$, then we write \mathcal{H})

(ロ) (同) (E) (E) (E)

Special images and wavelets Many alternatives

Horizon images, the class ${\cal H}$

 $\begin{array}{l} \bullet \hspace{0.1cm} H^{\alpha} = \{c: [0,1] \rightarrow \mathbb{R}: |D^{s}c(x) - D^{s}c(x')| \leq C_{\alpha}|x - x'|^{\alpha - s}\}, \\ s = \lfloor \alpha \rfloor \hspace{0.1cm} (\text{H\"older class}). \end{array}$

• $\mathcal{PS}^{\alpha,\beta} = \{f : [0,1]^2 \to \mathbb{R}, f \in H^{\beta}, \text{ if } y \neq c(x), c \in H^{\alpha}\}$ (piecewise smooth) $\alpha, \beta \in (1,2]$

•
$$\mathcal{H}^{\alpha} = \{f : [0,1]^2 \rightarrow \{0,1\} :$$

 $f(x,y) = 1, \text{ if } y \leq c(x), 0 \text{ otherwise, } c \in H^{\alpha}\}$
(horizon class, $\alpha \in (1,2], \text{ most often } \alpha = 2, \text{ then we write } \mathcal{H})$

・ロッ ・回 ・ ・ ヨ ・ ・

Special images and wavelets Many alternatives

Problem with dyadic wavelet approximation

- Large number of dyadic squares of size 2^{-j} that intersect the curve c(t).
- Slow decay of wavelet coefficients.
- Taking n largest wavelet coefficients gives approximant f_n and ||f f_n||₂ = O(n^{-1/2})
- while wavelet approximation of $c \in C^2$ decays like $O(n^{-2})$
- (Classical) wavelets are good for *point* singularities, but behave poorly on *line* singularities

・ロト ・回ト ・ヨト ・ヨト

Special images and wavelets Many alternatives

Problem with dyadic wavelet approximation

- Large number of dyadic squares of size 2^{-j} that intersect the curve c(t).
- Slow decay of wavelet coefficients.
- Taking *n* largest wavelet coefficients gives approximant f_n and $||f - f_n||_2 = O(n^{-1/2})$
- while wavelet approximation of $c \in C^2$ decays like $O(n^{-2})$
- (Classical) wavelets are good for *point* singularities, but behave poorly on *line* singularities

・ロト ・回ト ・ヨト ・ヨト

Special images and wavelets Many alternatives

Problem with dyadic wavelet approximation

- Large number of dyadic squares of size 2^{-j} that intersect the curve c(t).
- Slow decay of wavelet coefficients.
- Taking *n* largest wavelet coefficients gives approximant f_n and $||f - f_n||_2 = O(n^{-1/2})$

• while wavelet approximation of $c \in C^2$ decays like $O(n^{-2})$

 (Classical) wavelets are good for *point* singularities, but behave poorly on *line* singularities

Special images and wavelets Many alternatives

Problem with dyadic wavelet approximation

- Large number of dyadic squares of size 2^{-j} that intersect the curve c(t).
- Slow decay of wavelet coefficients.
- Taking *n* largest wavelet coefficients gives approximant f_n and $||f - f_n||_2 = O(n^{-1/2})$
- while wavelet approximation of $c \in C^2$ decays like $O(n^{-2})$
- (Classical) wavelets are good for *point* singularities, but behave poorly on *line* singularities

・ロン ・回 と ・ ヨ と ・ ヨ と …

Special images and wavelets Many alternatives

Problem with dyadic wavelet approximation

- Large number of dyadic squares of size 2^{-j} that intersect the curve c(t).
- Slow decay of wavelet coefficients.
- Taking *n* largest wavelet coefficients gives approximant f_n and $||f f_n||_2 = O(n^{-1/2})$
- while wavelet approximation of $c \in C^2$ decays like $O(n^{-2})$
- (Classical) wavelets are good for *point* singularities, but behave poorly on *line* singularities

イロト イポト イヨト イヨト

Special images and wavelets Many alternatives

Many alternatives

A multitude of techniques and -lets.

Optimize cvg rate of best approximation with *n* parameters in a class ($\alpha = 2$).

- Ridgelets (Donoho)
- Curvelets/Contourlets (Candès, Donoho) $O(n^{-2} \log n)$
- Wedgelets (Donoho) $O(n^{-2}) + \delta$ (δ angular resolution)
- Dictionaries (e.g. Basis pursuit and matching pursuit)
- Bandelets (Mallat) (wavelets adapted to geometric contents)
- Domain partitioning (edge detection and segmentation)
- Binary space partitioning (e.g. geometric wavelets)
- Adaptive thinning (adaptive thinning of triangular mesh)

・ロン ・回 と ・ ヨ と ・ ヨ と

Special images and wavelets Many alternatives

Many alternatives

A multitude of techniques and -lets.

Optimize cvg rate of best approximation with *n* parameters in a class ($\alpha = 2$).

Ridgelets (Donoho)

- Curvelets/Contourlets (Candès, Donoho) $O(n^{-2} \log n)$
- Wedgelets (Donoho) $O(n^{-2}) + \delta$ (δ angular resolution)
- Dictionaries (e.g. Basis pursuit and matching pursuit)
- Bandelets (Mallat) (wavelets adapted to geometric contents)
- Domain partitioning (edge detection and segmentation)
- Binary space partitioning (e.g. geometric wavelets)
- Adaptive thinning (adaptive thinning of triangular mesh)

・ロン ・回 と ・ ヨン ・ ヨン

Special images and wavelets Many alternatives

Many alternatives

A multitude of techniques and -lets.

Optimize cvg rate of best approximation with *n* parameters in a class ($\alpha = 2$).

- Ridgelets (Donoho)
- Curvelets/Contourlets (Candès, Donoho) $O(n^{-2} \log n)$
- Wedgelets (Donoho) $O(n^{-2}) + \delta$ (δ angular resolution)
- Dictionaries (e.g. Basis pursuit and matching pursuit)
- Bandelets (Mallat) (wavelets adapted to geometric contents)
- Domain partitioning (edge detection and segmentation)
- Binary space partitioning (e.g. geometric wavelets)
- Adaptive thinning (adaptive thinning of triangular mesh)

イロン イヨン イヨン イヨン

A multitude of techniques and -lets.

Optimize cvg rate of best approximation with *n* parameters in a class ($\alpha = 2$).

- Ridgelets (Donoho)
- Curvelets/Contourlets (Candès, Donoho) $O(n^{-2} \log n)$
- Wedgelets (Donoho) $O(n^{-2}) + \delta$ (δ angular resolution)
- Dictionaries (e.g. Basis pursuit and matching pursuit)
- Bandelets (Mallat) (wavelets adapted to geometric contents)
- Domain partitioning (edge detection and segmentation)
- Binary space partitioning (e.g. geometric wavelets)
- Adaptive thinning (adaptive thinning of triangular mesh)

イロン イヨン イヨン イヨン

A multitude of techniques and -lets.

Optimize cvg rate of best approximation with *n* parameters in a class ($\alpha = 2$).

- Ridgelets (Donoho)
- Curvelets/Contourlets (Candès, Donoho) $O(n^{-2} \log n)$
- Wedgelets (Donoho) $O(n^{-2}) + \delta$ (δ angular resolution)
- Dictionaries (e.g. Basis pursuit and matching pursuit)
- Bandelets (Mallat) (wavelets adapted to geometric contents)
- Domain partitioning (edge detection and segmentation)
- Binary space partitioning (e.g. geometric wavelets)
- Adaptive thinning (adaptive thinning of triangular mesh)

・ロン ・回 と ・ ヨ と ・ ヨ と

A multitude of techniques and -lets.

Optimize cvg rate of best approximation with *n* parameters in a class ($\alpha = 2$).

- Ridgelets (Donoho)
- Curvelets/Contourlets (Candès, Donoho) $O(n^{-2} \log n)$
- Wedgelets (Donoho) $O(n^{-2}) + \delta$ (δ angular resolution)
- Dictionaries (e.g. Basis pursuit and matching pursuit)
- Bandelets (Mallat) (wavelets adapted to geometric contents)
- Domain partitioning (edge detection and segmentation)
- Binary space partitioning (e.g. geometric wavelets)
- Adaptive thinning (adaptive thinning of triangular mesh)

・ロン ・回 と ・ ヨ と ・ ヨ と …

A multitude of techniques and -lets.

Optimize cvg rate of best approximation with *n* parameters in a class ($\alpha = 2$).

- Ridgelets (Donoho)
- Curvelets/Contourlets (Candès, Donoho) $O(n^{-2} \log n)$
- Wedgelets (Donoho) $O(n^{-2}) + \delta$ (δ angular resolution)
- Dictionaries (e.g. Basis pursuit and matching pursuit)
- Bandelets (Mallat) (wavelets adapted to geometric contents)
- Domain partitioning (edge detection and segmentation)
- Binary space partitioning (e.g. geometric wavelets)
- Adaptive thinning (adaptive thinning of triangular mesh)

・ロン ・回 と ・ ヨ と ・ ヨ と

A multitude of techniques and -lets.

Optimize cvg rate of best approximation with *n* parameters in a class ($\alpha = 2$).

- Ridgelets (Donoho)
- Curvelets/Contourlets (Candès, Donoho) $O(n^{-2} \log n)$
- Wedgelets (Donoho) $O(n^{-2}) + \delta$ (δ angular resolution)
- Dictionaries (e.g. Basis pursuit and matching pursuit)
- Bandelets (Mallat) (wavelets adapted to geometric contents)
- Domain partitioning (edge detection and segmentation)
- Binary space partitioning (e.g. geometric wavelets)
- Adaptive thinning (adaptive thinning of triangular mesh)

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・ ・

A multitude of techniques and -lets.

Optimize cvg rate of best approximation with *n* parameters in a class ($\alpha = 2$).

- Ridgelets (Donoho)
- Curvelets/Contourlets (Candès, Donoho) $O(n^{-2} \log n)$
- Wedgelets (Donoho) $O(n^{-2}) + \delta$ (δ angular resolution)
- Dictionaries (e.g. Basis pursuit and matching pursuit)
- Bandelets (Mallat) (wavelets adapted to geometric contents)
- Domain partitioning (edge detection and segmentation)
- Binary space partitioning (e.g. geometric wavelets)
- Adaptive thinning (adaptive thinning of triangular mesh)

・ロン ・四 と ・ ヨ と ・ ヨ と

Computer graphics Normal offset in 1D Normal offset in 2D

Some terminology

A method with origins in computer graphics

- Pixel values = z-coordinate, then image = object
- triangulation of image = triangular mesh on the object
- However in CG the objects are smooth

・ロン ・回 と ・ ヨン ・ ヨン

Computer graphics Normal offset in 1D Normal offset in 2D

Some terminology

- A method with origins in computer graphics
- Pixel values = z-coordinate, then image = object
- triangulation of image = triangular mesh on the object
- However in CG the objects are smooth

・ロン ・回 と ・ ヨン ・ ヨン

Computer graphics Normal offset in 1D Normal offset in 2D

Some terminology

- A method with origins in computer graphics
- Pixel values = z-coordinate, then image = object
- triangulation of image = triangular mesh on the object
- However in CG the objects are smooth

Computer graphics Normal offset in 1D Normal offset in 2D

Some terminology

- A method with origins in computer graphics
- Pixel values = z-coordinate, then image = object
- triangulation of image = triangular mesh on the object
- However in CG the objects are smooth

Computer graphics Normal offset in 1D Normal offset in 2D

Normal offsets in 1D

normal bisector

- piercing point \rightarrow normal offset
- defines refinement
- discontinuity rapidly detected
- vertical vs. normal offset

Computer graphics Normal offset in 1D Normal offset in 2D

Normal offsets in 1D

- normal bisector
- piercing point \rightarrow normal offset
- defines refinement
- discontinuity rapidly detected
- vertical vs. normal offset

Computer graphics Normal offset in 1D Normal offset in 2D

Normal offsets in 1D

- normal bisector
- piercing point \rightarrow normal offset
- defines refinement
- discontinuity rapidly detected
- vertical vs. normal offset

Computer graphics Normal offset in 1D Normal offset in 2D

Normal offsets in 1D

- normal bisector
- piercing point \rightarrow normal offset
- defines refinement
- discontinuity rapidly detected
- vertical vs. normal offset

() < </p>

Computer graphics Normal offset in 1D Normal offset in 2D

Normal offsets in 1D

- normal bisector
- piercing point \rightarrow normal offset
- defines refinement
- discontinuity rapidly detected
- vertical vs. normal offset

<ロ> (日) (日) (日) (日) (日)

Computer graphics Normal offset in 1D Normal offset in 2D

Normal offsets for a smooth curve

Normal offsets generate a regular grid on a smooth function.

・ロン ・回 と ・ ヨン ・ ヨン

臣

Computer graphics Normal offset in 1D Normal offset in 2D

Dyadic subdivision and singularity

Dyadic subdivision needs 'infinitely many' steps to locate the singularity.

Computer graphics Normal offset in 1D Normal offset in 2D

Normal offsets in 2D

• Not a normal in the centers of the triangles of the object mesh

- A normal bisector for every edge in that mesh in a vertical plane though that edge.
- In that plane you do the 1D-case, with projections of the piercing points giving a subdivision point on every edge of the triangulation

Computer graphics Normal offset in 1D Normal offset in 2D

Normal offsets in 2D

- Not a normal in the centers of the triangles of the object mesh
- A normal bisector for every edge in that mesh in a vertical plane though that edge.
- In that plane you do the 1D-case, with projections of the piercing points giving a subdivision point on every edge of the triangulation

Computer graphics Normal offset in 1D Normal offset in 2D

Normal offsets in 2D

- Not a normal in the centers of the triangles of the object mesh
- A normal bisector for every edge in that mesh in a vertical plane though that edge.
- In that plane you do the 1D-case, with projections of the piercing points giving a subdivision point on every edge of the triangulation

Computer graphics Normal offset in 1D Normal offset in 2D

Possible splits

- Need to take the best possible split into 4 finer triangles.
- Take the one that gives the smallest polynomial approximation error

Computer graphics Normal offset in 1D Normal offset in 2D

Possible splits

- Need to take the best possible split into 4 finer triangles.
- Take the one that gives the smallest polynomial approximation error

<ロ> (日) (日) (日) (日) (日)
Computer graphics Normal offset in 1D Normal offset in 2D

Possible splits

- \blacksquare class \mathcal{H}
- Rule of thumb: choose the one giving the least possible intersections with the discontinuity.
- Gray triangles need subdivision.

・ロト ・回ト ・ヨト ・ヨト

Computer graphics Normal offset in 1D Normal offset in 2D

Possible splits

Left: regular subdivision; Right: adaptive subdivisionRight has less intersections with singularity contour

・ロン ・回 と ・ ヨ と ・ ヨ と

臣

Computer graphics Normal offset in 1D Normal offset in 2D

Possible splits

Left: regular subdivision; Right: adaptive subdivisionRight has less intersections with singularity contour

・ロン ・四 と ・ ヨ と ・ ヨ と

臣

Polynomial wavelets Tree pruning Encoding

Update: polynomial wavelet

Interpolating mesh gives poor approximation

- P_{Δ} = best polynomial approximation on triangle Δ If Δ is a subtriangle of Δ' , then the geometric wavelet is $\psi_{\Delta} = P_{\Delta} - P_{\Delta'}$ restricted to Δ . [Dekel & Leviatan]
- We define $\psi_{\Delta} = P_{\Delta} Q_{\Delta}$ where $Q_{\Delta} \in \Pi_2$ is an interpolating polynomial (comes for free).

The wavelets are the detail info to be added to the object mesh.

・ロン ・四 と ・ ヨ と ・ ヨ と

Polynomial wavelets Tree pruning Encoding

Update: polynomial wavelet

- Interpolating mesh gives poor approximation
- P_{Δ} = best polynomial approximation on triangle Δ If Δ is a subtriangle of Δ' , then the geometric wavelet is $\psi_{\Delta} = P_{\Delta} - P_{\Delta'}$ restricted to Δ . [Dekel & Leviatan]
- We define $\psi_{\Delta} = P_{\Delta} Q_{\Delta}$ where $Q_{\Delta} \in \Pi_2$ is an interpolating polynomial (comes for free).

The wavelets are the detail info to be added to the object mesh.

(ロ) (同) (E) (E) (E)

Polynomial wavelets Tree pruning Encoding

Update: polynomial wavelet

- Interpolating mesh gives poor approximation
- P_{Δ} = best polynomial approximation on triangle Δ If Δ is a subtriangle of Δ' , then the geometric wavelet is $\psi_{\Delta} = P_{\Delta} - P_{\Delta'}$ restricted to Δ . [Dekel & Leviatan]
- We define ψ_Δ = P_Δ − Q_Δ where Q_Δ ∈ Π₂ is an interpolating polynomial (comes for free).

The wavelets are the detail info to be added to the object mesh.

(日) (四) (E) (E) (E) (E)

Polynomial wavelets Tree pruning Encoding

Tree pruning

Successive subtriangulations = graph

Nodes = subdivision (geometric) data + detail info (wavelets)

Pruning = cut away the less important branches

・ロト ・回ト ・ヨト ・ヨト

Polynomial wavelets Tree pruning Encoding

Tree pruning

- Successive subtriangulations = graph
- Nodes = subdivision (geometric) data + detail info (wavelets)
- Pruning = cut away the less important branches

・ロト ・回ト ・ヨト ・ヨト

Polynomial wavelets Tree pruning Encoding

Tree pruning

- Successive subtriangulations = graph
- Nodes = subdivision (geometric) data + detail info (wavelets)
- Pruning = cut away the less important branches

・ロン ・回 と ・ ヨン ・ ヨン

Polynomial wavelets Tree pruning Encoding

Tree pruning

$$\min \|f - \tilde{f}_n\|, \quad \tilde{f}_n \leftarrow \sum_{t \in \ell(S)} Q_{\Delta(t)} + \sum_{t \in \ell(S)} \psi_{\Delta(t)}$$

- S subtree
- t nodes of tree
- $\ell(S)$ leaves of tree S
- $\Delta(t)$ triangle at node t
- $Q_{\Delta(t)}$ (linear) interpolating polynomial on $\Delta(t)$
- $\psi_{\Delta(t)}$ polynomial (least squares) wavelet on $\Delta(t)$
- Note: there can be a wavelet at every node but generated from leave-wavelets

イロト イヨト イヨト イヨト

Polynomial wavelets Tree pruning Encoding

Optimal tree pruning (no $\psi_{\Delta(t)}$)

Define

- R(S) monotonically increasing bit-rate functional on (sub)tree S
- D(S) monotonically decreasing distortion functional on (sub)tree S
- Prune S such that $\min_{S} D(S) + \lambda(R(S) R_{\text{budget}})$, (λ regularization parameter)
- i.e., $\min_{ ilde{f}} D(ilde{f})$ such that $R(ilde{f}) \leq R_{ ext{budget}}^{-1}$
 - Optimal S for given λ by top-down pruning in linear time (in N = #nodes).
 - Iteration on λ to approach $R_{ ext{budget}}$
 - Complexity O(N log N)

・ロン ・四 と ・ ヨ と ・ ヨ と

Polynomial wavelets Tree pruning Encoding

Optimal tree pruning (no $\psi_{\Delta(t)}$)

Define

- R(S) monotonically increasing bit-rate functional on (sub)tree S
- D(S) monotonically decreasing distortion functional on (sub)tree S
- Prune S such that $\min_{S} D(S) + \lambda(R(S) R_{\text{budget}})$, (λ regularization parameter)
- i.e., $\min_{\widetilde{f}} D(\widetilde{f})$ such that $R(\widetilde{f}) \leq R_{ ext{budget}}^1$
 - Optimal S for given \(\lambda\) by top-down pruning in linear time (in \(N = \#nodes)\).
 - Iteration on λ to approach $R_{
 m budget}$
 - Complexity O(N log N)

¹Chou, Lookabaugh, Gray (1989)

・ロン ・雪 と ・ ヨ と

Polynomial wavelets Tree pruning Encoding

Optimal tree pruning (no $\psi_{\Delta(t)}$)

Define

- R(S) monotonically increasing bit-rate functional on (sub)tree S
- D(S) monotonically decreasing distortion functional on (sub)tree S
- Prune S such that $\min_{S} D(S) + \lambda(R(S) R_{\text{budget}})$, (λ regularization parameter)
- i.e., $\min_{\widetilde{f}} D(\widetilde{f})$ such that $R(\widetilde{f}) \leq R_{ ext{budget}}^1$
 - Optimal S for given \(\lambda\) by top-down pruning in linear time (in \(N = \#nodes)\).
 - Iteration on λ to approach R_{budget}
 - Complexity O(N log N)

(日) (종) (종) (종) (종)

Polynomial wavelets Tree pruning Encoding

Optimal tree pruning (with normal offsets, wavelets and quantization)

Recall a wavelet at every node, but only encoded in the leaves.

- Approximation error on $\Delta(t)$: $D_a(t) = \|f - (Q_{\Delta(t)} + \psi_{\Delta(t)})\|_2, \quad \forall t \in S$
- For subtree S_t rooted at t: $D_a(S_t) = \sum_{l \in \ell(S_t)} D_a(l) - D_a(t)$
- Quantization error on $\Delta(t)$: $D_q(t)$
- For subtree S_t rooted at t: $D_q(S_t) = \sum_{l \in \ell(S_t)} D_q(l) D_q(t)$
- Refinement cost function $R_{\theta}(t)$ (normal offsets + tesselation) $R_{\theta}(S_t) = \sum_{t \in S \setminus \ell(S)} R_{\theta}(t)$
- Quantization cost: $R_q(S_t) = \sum_{l \in l(S_t)} R_q(l) R_q(t)$
- Total cost for S_t : $R(S_t) = R_{\theta}(S_t) + R_{\sigma}(S_t)$

・ロト ・回ト ・ヨト ・ヨト

Polynomial wavelets Tree pruning Encoding

Optimal tree pruning (with normal offsets, wavelets and quantization)

Recall a wavelet at every node, but only encoded in the leaves.

- Approximation error on $\Delta(t)$: $D_{a}(t) = \|f - (Q_{\Delta(t)} + \psi_{\Delta(t)})\|_{2}, \quad \forall t \in S$
- For subtree S_t rooted at t: $D_a(S_t) = \sum_{l \in \ell(S_t)} D_a(l) - D_a(t)$
- Quantization error on $\Delta(t)$: $D_q(t)$
- For subtree S_t rooted at t: $D_q(S_t) = \sum_{l \in \ell(S_t)} D_q(l) D_q(t)$
- Refinement cost function $R_{\theta}(t)$ (normal offsets + tesselation) $R_{\theta}(S_t) = \sum_{t \in S \setminus \ell(S)} R_{\theta}(t)$
- Quantization cost: $R_q(S_t) = \sum_{l \in \ell(S_t)} R_q(l) R_q(t)$
- Total cost for S_t : $R(S_t) = R_{\theta}(S_t) + R_{\sigma}(S_t)$

・ロン ・回 と ・ ヨ と ・ ヨ と …

Polynomial wavelets Tree pruning Encoding

Optimal tree pruning (with normal offsets, wavelets and quantization)

Recall a wavelet at every node, but only encoded in the leaves.

- Approximation error on $\Delta(t)$: $D_{a}(t) = \|f - (Q_{\Delta(t)} + \psi_{\Delta(t)})\|_{2}, \quad \forall t \in S$
- For subtree S_t rooted at t: $D_a(S_t) = \sum_{l \in \ell(S_t)} D_a(l) - D_a(t)$
- Quantization error on $\Delta(t)$: $D_q(t)$
- For subtree S_t rooted at t: $D_q(S_t) = \sum_{l \in \ell(S_t)} D_q(l) D_q(t)$
- Refinement cost function $R_{\theta}(t)$ (normal offsets + tesselation) $R_{\theta}(S_t) = \sum_{t \in S \setminus \ell(S)} R_{\theta}(t)$
- Quantization cost: $R_q(S_t) = \sum_{l \in \ell(S_t)} R_q(l) R_q(t)$
- Total cost for S_t : $R(S_t) = R_{\theta}(S_t) + R_{\sigma}(S_t)$

・ロン ・回 と ・ ヨン ・ ヨン

Polynomial wavelets Tree pruning Encoding

Optimal tree pruning (with normal offsets, wavelets and quantization)

Recall a wavelet at every node, but only encoded in the leaves.

- Approximation error on $\Delta(t)$: $D_{a}(t) = \|f - (Q_{\Delta(t)} + \psi_{\Delta(t)})\|_{2}, \quad \forall t \in S$
- For subtree S_t rooted at t: $D_a(S_t) = \sum_{l \in \ell(S_t)} D_a(l) - D_a(t)$
- Quantization error on $\Delta(t)$: $D_q(t)$
- For subtree S_t rooted at t: $D_q(S_t) = \sum_{l \in \ell(S_t)} D_q(l) D_q(t)$
- Refinement cost function $R_{\theta}(t)$ (normal offsets + tesselation) $R_{\theta}(S_t) = \sum_{t \in S \setminus \ell(S)} R_{\theta}(t)$
- Quantization cost: $R_q(S_t) = \sum_{l \in \ell(S_t)} R_q(l) R_q(t)$
- Total cost for S_t : $R(S_t) = R_{\theta}(S_t) + R_q(S_t)$

・ロン ・回 と ・ ヨン ・ ヨン

Polynomial wavelets Tree pruning Encoding

Optimal tree pruning (with normal offsets, wavelets and quantization)

Recall a wavelet at every node, but only encoded in the leaves.

- Approximation error on $\Delta(t)$: $D_a(t) = \|f - (Q_{\Delta(t)} + \psi_{\Delta(t)})\|_2, \quad \forall t \in S$
- For subtree S_t rooted at t: $D_a(S_t) = \sum_{l \in \ell(S_t)} D_a(l) - D_a(t)$
- Quantization error on $\Delta(t)$: $D_q(t)$
- For subtree S_t rooted at t: $D_q(S_t) = \sum_{l \in \ell(S_t)} D_q(l) D_q(t)$
- Refinement cost function $R_{\theta}(t)$ (normal offsets + tesselation) $R_{\theta}(S_t) = \sum_{t \in S \setminus \ell(S)} R_{\theta}(t)$
- Quantization cost: $R_q(S_t) = \sum_{l \in \ell(S_t)} R_q(l) R_q(t)$
- Total cost for S_t : $R(S_t) = R_{\theta}(S_t) + R_q(S_t)$.

・ロ・ ・回・ ・ヨ・ ・ ヨ・

Polynomial wavelets Tree pruning Encoding

Optimal tree pruning (with normal offsets, wavelets and quantization)

Recall a wavelet at every node, but only encoded in the leaves.

- Approximation error on $\Delta(t)$: $D_{a}(t) = \|f - (Q_{\Delta(t)} + \psi_{\Delta(t)})\|_{2}, \quad \forall t \in S$
- For subtree S_t rooted at t: $D_a(S_t) = \sum_{l \in \ell(S_t)} D_a(l) - D_a(t)$
- Quantization error on $\Delta(t)$: $D_q(t)$
- For subtree S_t rooted at t: $D_q(S_t) = \sum_{l \in \ell(S_t)} D_q(l) D_q(t)$
- Refinement cost function $R_{\theta}(t)$ (normal offsets + tesselation) $R_{\theta}(S_t) = \sum_{t \in S \setminus \ell(S)} R_{\theta}(t)$
- Quantization cost: $R_q(S_t) = \sum_{l \in \ell(S_t)} R_q(l) R_q(t)$
- Total cost for S_t : $R(S_t) = R_{\theta}(S_t) + R_q(S_t)$.

・ロ・ ・回・ ・ヨ・ ・ ヨ・

Polynomial wavelets Tree pruning Encoding

Optimal tree pruning (with normal offsets, wavelets and quantization)

Recall a wavelet at every node, but only encoded in the leaves.

- Approximation error on $\Delta(t)$: $D_{a}(t) = \|f - (Q_{\Delta(t)} + \psi_{\Delta(t)})\|_{2}, \quad \forall t \in S$
- For subtree S_t rooted at t: $D_a(S_t) = \sum_{l \in \ell(S_t)} D_a(l) - D_a(t)$
- Quantization error on $\Delta(t)$: $D_q(t)$
- For subtree S_t rooted at t: $D_q(S_t) = \sum_{l \in \ell(S_t)} D_q(l) D_q(t)$
- Refinement cost function $R_{\theta}(t)$ (normal offsets + tesselation) $R_{\theta}(S_t) = \sum_{t \in S \setminus \ell(S)} R_{\theta}(t)$
- Quantization cost: $R_q(S_t) = \sum_{l \in \ell(S_t)} R_q(l) R_q(t)$
- Total cost for S_t : $R(S_t) = R_{\theta}(S_t) + R_q(S_t)$.

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Optimal tree pruning

Now we have a bit-rate function R(S) and a distortion function $D_a(S) + D_q(S)$

- Prune over nested subtrees $\cup_{t' \in \ell(S_t)} \Delta(t') = \Delta(t)$
- A one-bit decoration indicator whether or not to add a wavelet at node t
- functions no longer linear or monotone → optimal pruning algorithm needs adaptation
- Wavelets represented by Bernstein polynomials $-\psi_{\Delta}(x,y) = \sum_{|i|=1} b_i B_i(z,y)$

・ロン ・回 と ・ ヨ と ・ ヨ と …

Optimal tree pruning

Now we have a bit-rate function R(S) and a distortion function $D_a(S) + D_q(S)$

- Prune over nested subtrees $\cup_{t' \in \ell(S_t)} \Delta(t') = \Delta(t)$
- A one-bit decoration indicator whether or not to add a wavelet at node t
- \blacksquare functions no longer linear or monotone \rightarrow optimal pruning algorithm needs adaptation
- Wavelets represented by Bernstein polynomials $\psi_{\Delta}(x, y) = \sum_{|i|=1} b_i B_i(z, y)$

・ロン ・回 と ・ ヨン ・ ヨン

Optimal tree pruning

Now we have a bit-rate function R(S) and a distortion function $D_a(S) + D_q(S)$

- Prune over nested subtrees $\cup_{t' \in \ell(S_t)} \Delta(t') = \Delta(t)$
- A one-bit decoration indicator whether or not to add a wavelet at node t
- \blacksquare functions no longer linear or monotone \rightarrow optimal pruning algorithm needs adaptation
- Wavelets represented by Bernstein polynomials $\psi_{\Delta}(x, y) = \sum_{|i|=1} b_i B_i(z, y)$

・ロン ・回 と ・ ヨ と ・ ヨ と

Optimal tree pruning

Now we have a bit-rate function R(S) and a distortion function $D_a(S) + D_q(S)$

- Prune over nested subtrees $\cup_{t' \in \ell(S_t)} \Delta(t') = \Delta(t)$
- A one-bit decoration indicator whether or not to add a wavelet at node t
- \blacksquare functions no longer linear or monotone \rightarrow optimal pruning algorithm needs adaptation
- Wavelets represented by Bernstein polynomials $\psi_{\Delta}(x, y) = \sum_{|i|=1} b_i B_i(z, y)$

(ロ) (同) (E) (E) (E)

Optimal tree pruning

Now we have a bit-rate function R(S) and a distortion function $D_a(S) + D_q(S)$

- Prune over nested subtrees $\cup_{t' \in \ell(S_t)} \Delta(t') = \Delta(t)$
- A one-bit decoration indicator whether or not to add a wavelet at node t
- \blacksquare functions no longer linear or monotone \rightarrow optimal pruning algorithm needs adaptation
- Wavelets represented by Bernstein polynomials $\psi_{\Delta}(x, y) = \sum_{|i|=1} b_i B_i(z, y)$

(ロ) (同) (E) (E) (E)

Polynomial wavelets Tree pruning Encoding

Encoding

What needs encoding?

- tree structure of S
- the partition of each triangle (points on edges)
- the type of partitioning for each triangle
- coefficients of polynomials ψ_{Δ} for leaf nodes

・ロン ・回 と ・ ヨン ・ ヨン

臣

Encoding

What needs encoding?

- tree structure of S
- the partition of each triangle (points on edges)
- the type of partitioning for each triangle
- coefficients of polynomials ψ_{Δ} for leaf nodes

・ロト ・回ト ・ヨト ・ヨト

Encoding

What needs encoding?

- tree structure of S
- the partition of each triangle (points on edges)
- the type of partitioning for each triangle
- coefficients of polynomials ψ_{Δ} for leaf nodes

・ロト ・回ト ・ヨト ・ヨト

Encoding

What needs encoding?

- tree structure of S
- the partition of each triangle (points on edges)
- the type of partitioning for each triangle
- coefficients of polynomials ψ_Δ for leaf nodes

・ロン ・回 と ・ ヨン ・ ヨン

Encoding

What needs encoding?

- tree structure of S
- the partition of each triangle (points on edges)
- the type of partitioning for each triangle
- coefficients of polynomials ψ_{Δ} for leaf nodes

Polynomial wavelets Tree pruning Encoding

Encoding

Problems with digital images

・ロン ・回 と ・ ヨン ・ ヨン

Э

Polynomial wavelets Tree pruning Encoding

Encoding

 Statistics of offsets for uniform distribution of singularity to assign bits and bins.

・ロト ・回ト ・ヨト ・ヨト

Polynomial wavelets Tree pruning Encoding

Encoding

- 51% wavelets
- 26% normal offsets
- 19% tree
- 4% triangular splits
- meta data

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Э

Polynomial wavelets Tree pruning Encoding

Example

◆□ → ◆□ → ◆ □ → ◆ □ →

Э

Polynomial wavelets Tree pruning Encoding

Example

Polynomial wavelets Tree pruning Encoding

Pruning effect

Adhemar Bulthee

Geometric image approximation
Polynomial wavelets Tree pruning Encoding

Reference

- W. Van Aerschot, M. Jansen, and A. Bultheel. Normal mesh based geometrical image compression. *Image and Vision Computing*, 27(4):459–468, 2009.
- W. Van Aerschot, M. Jansen, E. Vanraes, and A. Bultheel. Image compression using normal mesh techniques.
 In A. Cohen, J.-L. Merrien, and L.L. Schumaker, editors, *Curves and Surface Fitting, Avignon 2006*, pages 266–275, Brentwood, 2007. Nashboro Press.
 - Ward Van Aerschot. *Multiscale Geometric Image Approximation*. PhD thesis, K.U.Leuven, September 2009.