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The problem
The problem

Let U an open subset of Rd .

Question

Can we estimate the Hausdorff dimension of the graph Γ(f ,U) of a
given function f : U → R ?

The problem is open ....even in the case of the celebrated
Weierstrass function WH defined on U = (0, 1) as

WH(x) =
∑
n≥0

2−nH cos(2nπx)
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The problem
An upper bound

The Hausdorff dimension dimH(Γ(f ,U)) of Γ(f ,U) can be related
to the smoothness of f .

Definition of Cα(Rd)

The function f belongs to Cα(Rd) if

∃C > 0∀(x , y) ∈ U2, |f (x)− f (y)| ≤ C |x − y |α

If for some α ∈ (0, 1), f ∈ Cα(U,R) then

dimH(Γ(f ,U)) ≤ d + 1− α .
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The problem
Onward to a lower bound

Can we define a notion of irregularity leading to a lower bound of
Γ(f , I ) ?

Definition of Iα(Rd)

Let α ∈ (0, 1).

Let x0 ∈ U. The locally bounded function f belongs to Iα(x0)
if

∃Cx0 , r0(x0) > 0, ∀r ≤ r0(x0), sup
|x−x0|≤r

|f (x)− f (x0)| ≥ Cx0rα .

The bounded function f belongs to Iα(U) if

∃C , r0 > 0, ∀xO ∈ U, ∀r ≤ r0, sup
x∈U,|x−x0|≤r

|f (x)−f (x0)| ≥ Crα .
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The problem
Strongly monoHölder functions

A function f may be both Cα(U) and Iα(U).

Strongly monoHölder functions

In such a case the function f is said to be strongly
monoHölder of exponent α on U.

The set of strongly monoHölder functions on U is denoted
SMα(U).

Two classical examples of strongly monoHölder functions

The Weierstrass function WH is strongly monoHölder of
exponent H.

Fractional Brownian Motion {BH(t)}t∈R is strongly
monoHölder of exponent H.
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monoHölder of exponent α on U.
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monoHölder of exponent H.

Marianne CLAUSEL–Samuel NICOLAY Some prevalent results about monoHolder functions



The problem Our main results Proof of Theorem 1 Proof of Theorem 2 Bibliography

The problem
Strongly monoHölder functions
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exponent H.

Fractional Brownian Motion {BH(t)}t∈R is strongly
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Strongly monoHölder functions

A function f may be both Cα(U) and Iα(U).

Strongly monoHölder functions
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The problem
The case of the box dimension

If f ∈ Iα(U) we can give a lower bound of the box dimension of
Γ(f ,U)

dimB(Γ(f ,U)) ≥ d + 1− α .

This inequality is false in general if we replace the box dimension
with the Hausdorff dimension.
Nevertheless it is satisfied by most of the studied strongly
monoHölder models.
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The problem
Two natural questions

Can we give a lower bound of dimH(Γ(f ,U)) for ”almost
every function” of Cα(Rd) ?

Is ”almost every function” of Cα(Rd) strongly monoHölder of
exponent α ?
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The concept of prevalence
A natural extension of ”almost everywhere” in Banach spaces

In Rd , a property holds almost everywhere if the set of points
where it is not true is of vanishing Lebesgue measure.

The notion of ”almost everywhere” satisfies two natural
properties

Invariance with respect to dilatation and translations.
Stability with respect to countable intersections.

These properties are a consequence of the σ–finiteness and
translation–invariance of this measure.

Unfortunately, there is no such measure in infinite dimensional
spaces .
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The concept of prevalence
A natural extension of ”almost everywhere” in Banach spaces

A suitable concept of ”almost everywhere” has to be defined using
another approach.
In Rd , a Borel set B has Lebesgues measure zero if and only if
there exists a compactly supported probability measure µ such
that,

∀x ∈ Rd , µ(x + B) = 0.

The idea of Christensen (1972)

In a Banach space E , a Borel set B ⊂ E is Haar-null if there exists
a compactly supported measure µ on E such that

∀x ∈ E , µ(x + B) = 0.
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The concept of prevalence
A natural extension of ”almost everywhere” in Banach spaces

Definition

A subset S of E is Haar-null if it is included in a Haar-null Borel
set.

Definition

The complement of a Haar-null set is called a prevalent set.
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Main results

Using the concept of prevalence we can state our two main results

Theorem 1

For any α ∈ (0, 1), the space SMα(Rd) is a prevalent subset of
Cα(Rd).

Theorem 2

For any α ∈ (0, 1) and for any f in a prevalent subset of Cα(Rd)

dimH(Γ(f ,U)) = d + 1− α .
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Proof of Theorem 1
Two intermediate results

A sufficient condition on wavelet coefficients for a function f
to be uniformly irregular.

A general technique for proving prevalent result : the
technique of stochastic process.
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Proof of Theorem 1
First ingredient of the proof : wavelets

Suppose we are dealing with compactly supported wavelets

Notation : wavelet leaders

For any dyadic cube λ, set

dλ = sup
λ′⊂λ
|cλ|

Proposition

Let α ∈ (0, 1). If there exist C1,C2 > 0 such that for any λ of scale
j ,

C12−jα ≤ dλ ≤ C22−jα,

then f is strongly monoHölder of exponent α.
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Proof of Theorem 1
Second ingredient of the proof : the stochastic process technique

A random element X on a Banach space E is a measurable
mapping X defined on a probability space (Ω,A,P) with
values in E .

For any random element X on E , PX (A) = P{X ∈ A} is a
probability on E .

The stochastic process technique

Set µ = PX in the definition of a Haar-null set. Then to prove that
a set A is Haar-null, it is sufficient to find some random element X
on E such that

∀f ∈ E , PX (A + f ) = 0.
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Proof of Theorem 1
Prevalent behavior of functions of Cα(Rd)

Proposition

For f in a prevalent subset of Cα(Rd), there exists C0 > 0 such
that for any dyadic cube λ of scale j

|dλ| ≥ C02−jα.

Proof

Let (n
(i)
j ,k)i ,j ,k be i.i.d. Bernoulli random variables and

X (x) =
2d−1∑
i=1

∑
j≥0

∑
|k|≤2jd

(−1)n
(i)
j,k 2−αjψλ(x).

We apply the stochastic process technique with X as random
element on Cα(Rd).
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Proof of Theorem 2
A lower bound of the Hausdorff dimension of the graph of random wavelet series

Proposition (Roueff, 2003)

Let X be the following random wavelet series

X (x) =
∑
λ

cλψλ(x),

where cλ are independent centered Gaussian random variables with
standard deviation σλ. Define

s = lim sup
J→∞

lim inf
j→∞

(−j)−1 log2 min
j≤l≤j+J

∑
k

min(1,
2−l

√
2πσλ

)2−2l .

Then almost surely dimHΓ(X + f , I ) ≥ s.

Marianne CLAUSEL–Samuel NICOLAY Some prevalent results about monoHolder functions



The problem Our main results Proof of Theorem 1 Proof of Theorem 2 Bibliography

Proof of Theorem 2
Proof of Theorem 2

Proof of Theorem 2

Let (ξ
(i)
j ,k)i ,j ,k be i.i.d. standard Gaussian random variables. We

consider the following Gaussian field

X (x) =
2d−1∑
i=1

∑
j≥0

∑
|k|≤2jd

ξ
(i)
j ,k

j2
√

log j
2−αjψ

(i)
j ,k(x).

We apply the stochastic process technique with X as random
element on Cα(Rd).
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