The problem	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography

Some prevalent results about monoHolder functions

Marianne CLAUSEL–Samuel NICOLAY

The problem ●○○○○○	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
The problem	em			

Let U an open subset of \mathbb{R}^d .

Question

Can we estimate the Hausdorff dimension of the graph $\Gamma(f, U)$ of a given function $f: U \to \mathbb{R}$?

向下 イヨト イヨト

The problem ●○○○○○	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
The problem	em			

Let U an open subset of \mathbb{R}^d .

Question

Can we estimate the Hausdorff dimension of the graph $\Gamma(f, U)$ of a given function $f: U \to \mathbb{R}$?

The problem is open

The problem ●○○○○○	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
The problem	em			

Let U an open subset of \mathbb{R}^d .

Question

Can we estimate the Hausdorff dimension of the graph $\Gamma(f, U)$ of a given function $f: U \to \mathbb{R}$?

The problem is openeven in the case of the celebrated Weierstrass function W_H defined on U = (0, 1) as

$$W_H(x) = \sum_{n \ge 0} 2^{-nH} \cos(2^n \pi x)$$

The problem ○●○○○○	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
The proble	em I			

The Hausdorff dimension $\dim_{\mathcal{H}}(\Gamma(f, U))$ of $\Gamma(f, U)$ can be related to the smoothness of f.

向下 イヨト イヨト

3

The problem ○●○○○○	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
The proble	em I			

The Hausdorff dimension $\dim_{\mathcal{H}}(\Gamma(f, U))$ of $\Gamma(f, U)$ can be related to the smoothness of f.

Definition of $\mathcal{C}^{\alpha}(\mathbb{R}^d)$

The function f belongs to $\mathcal{C}^{\alpha}(\mathbb{R}^d)$ if

$$\exists \mathcal{C} > 0 \, orall (x,y) \in U^2, \, |f(x) - f(y)| \leq \mathcal{C} |x-y|^lpha$$

The problem ○●○○○○	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
The proble	em I			

The Hausdorff dimension $\dim_{\mathcal{H}}(\Gamma(f, U))$ of $\Gamma(f, U)$ can be related to the smoothness of f.

Definition of $\mathcal{C}^{\alpha}(\mathbb{R}^d)$

The function f belongs to $\mathcal{C}^{\alpha}(\mathbb{R}^d)$ if

$$\exists \mathcal{C} > 0 \, orall (x,y) \in U^2, \, |f(x)-f(y)| \leq \mathcal{C} |x-y|^lpha$$

If for some $\alpha \in (0, 1)$, $f \in \mathcal{C}^{\alpha}(U, \mathbb{R})$ then

 $\dim_{\mathcal{H}}(\Gamma(f, U)) \leq d + 1 - \alpha .$

- 4 同 6 4 日 6 4 日 6

The problem ○○●○○○	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
The proble Onward to a lo	e m wer bound			

Definition of $I^{\alpha}(\mathbb{R}^d)$

The problem ○○●○○○	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
The proble Onward to a low	m ver bound			

Definition of $I^{\alpha}(\mathbb{R}^d)$ Let $\alpha \in (0, 1)$.

The problem ○○●○○○	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
The proble Onward to a low	M rer bound			

Definition of $I^{\alpha}(\mathbb{R}^d)$

Let $\alpha \in (0, 1)$.

Let x₀ ∈ U. The locally bounded function f belongs to I^α(x₀) if

$$\exists C_{x_0}, r_0(x_0) > 0, \, \forall r \leq r_0(x_0), \, \sup_{|x-x_0| \leq r} |f(x) - f(x_0)| \geq C_{x_0} r^{\alpha}$$

The problem ○○●○○○	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
The proble Onward to a low	M rer bound			

Definition of $I^{\alpha}(\mathbb{R}^d)$

Let $\alpha \in (0, 1)$.

Let x₀ ∈ U. The locally bounded function f belongs to I^α(x₀) if

$$\exists C_{x_0}, r_0(x_0) > 0, \, \forall r \leq r_0(x_0), \, \sup_{|x-x_0| \leq r} |f(x) - f(x_0)| \geq C_{x_0} r^{\alpha} \; .$$

• The bounded function f belongs to $I^{\alpha}(U)$ if

$$\exists C, r_0 > 0, \forall x_O \in U, \forall r \le r_0, \sup_{x \in U, |x-x_0| \le r} |f(x) - f(x_0)| \ge Cr^{\alpha}$$

The problem ○○○●○○	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
The proble Strongly monol	em lölder functions			

 3 . 3

The problem ○○○●○○	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
The proble	M ölder functions			

Strongly monoHölder functions

 In such a case the function *f* is said to be strongly monoHölder of exponent *α* on *U*.

The problem ○○○●○○	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
The proble	em Jölder functions			

Strongly monoHölder functions

- In such a case the function f is said to be strongly monoHölder of exponent α on U.
- The set of strongly monoHölder functions on U is denoted $SM^{\alpha}(U)$.

向下 イヨト イヨト

The problem ○○○●○○	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
The proble	em Jölder functions			

Strongly monoHölder functions

- In such a case the function f is said to be strongly monoHölder of exponent α on U.
- The set of strongly monoHölder functions on U is denoted SM^α(U).

Two classical examples of strongly monoHölder functions

• The Weierstrass function W_H is strongly monoHölder of exponent H.

A (1) > A (2) > A

The problem ○○○●○○	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
The proble	em Hölder functions			

Strongly monoHölder functions

- In such a case the function f is said to be strongly monoHölder of exponent α on U.
- The set of strongly monoHölder functions on U is denoted SM^α(U).

Two classical examples of strongly monoHölder functions

- The Weierstrass function W_H is strongly monoHölder of exponent H.
- Fractional Brownian Motion {B_H(t)}_{t∈ℝ} is strongly monoHölder of exponent H.

A (1) > A (2) > A

The problem	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
000000				
The probl	em e box dimension			

If $f \in I^{\alpha}(U)$ we can give a lower bound of the box dimension of $\Gamma(f, U)$

 $\dim_B(\Gamma(f,U)) \ge d+1-\alpha \ .$

This inequality is false in general if we replace the box dimension with the Hausdorff dimension.

Nevertheless it is satisfied by most of the studied strongly monoHölder models.

向下 イヨト イヨト

The problem ○○○○○●	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
The proble	estions			

 Can we give a lower bound of dim_H(Γ(f, U)) for "almost every function" of C^α(ℝ^d)?

向下 イヨト イヨト

The problem	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
000000	0000	0000	00	
The problem Two natural qu	em lestions			

- Can we give a lower bound of dim_H(Γ(f, U)) for "almost every function" of C^α(ℝ^d)?
- Is "almost every function" of C^α(ℝ^d) strongly monoHölder of exponent α?

• The notion of "almost everywhere" satisfies two natural properties

- The notion of "almost everywhere" satisfies two natural properties
 - Invariance with respect to dilatation and translations.

- The notion of "almost everywhere" satisfies two natural properties
 - Invariance with respect to dilatation and translations.
 - Stability with respect to countable intersections.

- The notion of "almost everywhere" satisfies two natural properties
 - Invariance with respect to dilatation and translations.
 - Stability with respect to countable intersections.
- These properties are a consequence of the σ -finiteness and translation-invariance of this measure.

- The notion of "almost everywhere" satisfies two natural properties
 - Invariance with respect to dilatation and translations.
 - Stability with respect to countable intersections.
- These properties are a consequence of the σ -finiteness and translation-invariance of this measure.
- Unfortunately, there is no such measure in infinite dimensional spaces .

(4月) (4日) (4日)

A suitable concept of "almost everywhere" has to be defined using another approach.

In \mathbb{R}^d , a Borel set *B* has Lebesgues measure zero if and only if there exists a compactly supported probability measure μ such that,

$$\forall x \in \mathbb{R}^d, \quad \mu(x+B) = 0.$$

The idea of Christensen (1972)

In a Banach space *E*, a Borel set $B \subset E$ is Haar-null if there exists a compactly supported measure μ on *E* such that

$$\forall x \in E, \quad \mu(x+B) = 0.$$

The problem	Our main results ○○●○	Proof of Theorem 1	Proof of Theorem 2	Bibliography
The concept A natural extens	pt of prevale	ence erywhere" in Banach	spaces	

Definition

A subset S of E is Haar-null if it is included in a Haar-null Borel set.

Definition

The complement of a Haar-null set is called a prevalent set.

- - 4 回 ト - 4 回 ト

э

The problem	Our main results ○○○●	Proof of Theorem 1	Proof of Theorem 2	Bibliography
Main resul	ts			

Using the concept of prevalence we can state our two main results

Theorem 1 For any $\alpha \in (0, 1)$, the space $SM^{\alpha}(\mathbb{R}^d)$ is a prevalent subset of $\mathcal{C}^{\alpha}(\mathbb{R}^d)$.

Theorem 2

For any $lpha \in (0,1)$ and for any f in a prevalent subset of $\mathcal{C}^{lpha}(\mathbb{R}^d)$

$$\dim_{\mathcal{H}}(\Gamma(f, U)) = d + 1 - \alpha .$$

The problem	Our main results	Proof of Theorem 1 ●○○○	Proof of Theorem 2	Bibliography
Proof of T Two intermediat	heorem 1 te results			

• A sufficient condition on wavelet coefficients for a function *f* to be uniformly irregular.

< 3 > <

• 3 >

э

The problem	Our main results	Proof of Theorem 1 ●○○○	Proof of Theorem 2	Bibliography
Proof of T Two intermediat	heorem 1 e results			

- A sufficient condition on wavelet coefficients for a function *f* to be uniformly irregular.
- A general technique for proving prevalent result : the technique of stochastic process.

The problem	Our main results	Proof of Theorem 1 ○●○○	Proof of Theorem 2	Bibliography
Proof of T First ingredient	heorem 1	ets		

Suppose we are dealing with compactly supported wavelets

-

The problem	Our main results	Proof of Theorem 1 ○●○○	Proof of Theorem 2	Bibliography
Proof of First ingredient	Theorem 1 t of the proof : way	velets		

Suppose we are dealing with compactly supported wavelets

Notation : wavelet leaders

For any dyadic cube λ , set

$$d_{\lambda} = \sup_{\lambda' \subset \lambda} |c_{\lambda}|$$

A B K A B K

A ■

The problem	Our main results	Proof of Theorem 1 ○●○○	Proof of Theorem 2	Bibliography			
Proof of 7	Proof of Theorem 1						

Suppose we are dealing with compactly supported wavelets

Notation : wavelet leaders

For any dyadic cube λ , set

$$d_{\lambda} = \sup_{\lambda' \subset \lambda} |c_{\lambda}|$$

Proposition

Let $\alpha \in (0, 1)$. If there exist $C_1, C_2 > 0$ such that for any λ of scale j,

$$C_1 2^{-j\alpha} \leq d_\lambda \leq C_2 2^{-j\alpha},$$

then f is strongly monoHölder of exponent α .

 A random element X on a Banach space E is a measurable mapping X defined on a probability space (Ω, A, ℙ) with values in E.

イロト イポト イヨト イヨト

- A random element X on a Banach space E is a measurable mapping X defined on a probability space (Ω, A, ℙ) with values in E.
- For any random element X on E, P_X(A) = P{X ∈ A} is a probability on E.

イロト イポト イヨト イヨト

- A random element X on a Banach space E is a measurable mapping X defined on a probability space (Ω, A, ℙ) with values in E.
- For any random element X on E, P_X(A) = P{X ∈ A} is a probability on E.

The stochastic process technique

Set $\mu = \mathbb{P}_X$ in the definition of a Haar-null set. Then to prove that a set A is Haar-null, it is sufficient to find some random element X on E such that

 $\forall f \in E, \quad \mathbb{P}_X(A+f) = 0.$

イロト イポト イヨト イヨト

The problem	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
		0000		
Proof of	Theorem 1			
Prevalent beh	avior of functions o	of $C^{\alpha}(\mathbb{R}^d)$		

Proposition

For f in a prevalent subset of $C^{\alpha}(\mathbb{R}^d)$, there exists $C_0 > 0$ such that for any dyadic cube λ of scale j

 $|d_{\lambda}| \geq C_0 2^{-j\alpha}.$

The problem	Our main results	Proof of Theorem 1 ○○○●	Proof of Theorem 2	Bibliography
Proof of T	heorem 1			

Prevalent behavior of functions of $C^{\alpha}(\mathbb{R}^d)$

Proposition

For f in a prevalent subset of $C^{\alpha}(\mathbb{R}^d)$, there exists $C_0 > 0$ such that for any dyadic cube λ of scale j

 $|d_{\lambda}| \geq C_0 2^{-j\alpha}.$

Proof

Let $(n_{i,k}^{(i)})_{i,j,k}$ be i.i.d. Bernoulli random variables and

$$X(x) = \sum_{i=1}^{2^d-1} \sum_{j \geq 0} \sum_{|k| \leq 2^{jd}} (-1)^{n_{j,k}^{(i)}} 2^{-lpha j} \psi_\lambda(x).$$

We apply the stochastic process technique with X as random element on $C^{\alpha}(\mathbb{R}^d)$.

Marianne CLAUSEL–Samuel NICOLAY Some prevalent results about monoHolder functions

The problem	Our main results	Proof of Theorem 1	Proof of Theorem 2 ●○	Bibliography
Proof of T A lower bound of	heorem 2 of the Hausdorff dim	ension of the graph of	random wavelet series	5

Proposition (Roueff, 2003)

Let X be the following random wavelet series

$$X(x) = \sum_{\lambda} c_{\lambda} \psi_{\lambda}(x),$$

where c_{λ} are independent centered Gaussian random variables with standard deviation σ_{λ} . Define

$$s = \limsup_{J \to \infty} \liminf_{j \to \infty} (-j)^{-1} \log_2 \min_{j \le l \le j+J} \sum_k \min(1, \frac{2^{-l}}{\sqrt{2\pi}\sigma_\lambda}) 2^{-2l}$$

Then almost surely $\dim_{\mathcal{H}} \Gamma(X + f, I) \geq s$.

The problem	Our main results	Proof of Theorem 1	Proof of Theorem 2 ○●	Bibliography
Proof of 7 Proof of Theor	Theorem 2			

Proof of Theorem 2

Let $(\xi_{j,k}^{(i)})_{i,j,k}$ be i.i.d. standard Gaussian random variables. We consider the following Gaussian field

$$X(x) = \sum_{i=1}^{2^d-1} \sum_{j\geq 0} \sum_{|k|\leq 2^{jd}} \frac{\xi_{j,k}^{(i)}}{j^2\sqrt{\log j}} \ 2^{-\alpha j} \psi_{j,k}^{(i)}(x).$$

We apply the stochastic process technique with X as random element on $C^{\alpha}(\mathbb{R}^d)$.

(1日) (1日) (日)

The problem	Our main results	Proof of Theorem 1	Proof of Theorem 2	Bibliography
Bibliograp	hy			

- J. CHRISTENSEN, On sets of Haar measure zero in Abelian Polish groups, Israel J. Math. Vol. 13, pp. 255-260 (1972).
- M. CLAUSEL, S.NICOLAY, Some prevalent results about strongly monoHölder functions, Preprint.
- B.R. HUNT, The Hausdorff dimension of graphs of Weierstrass functions, Proc. Amer. Math. Soc., Vol. 126, pp. 791–800 (1998).
- F. ROUEFF, Almost sure Hausdorff dimension of graphs of random wavelet series, J. Fourier Anal. Appl., Vol 9(3), pp. 237–260 (2003).
- B. HUNT, T. SAUER, J. YORKE, Prevalence : a translation invariance "almost every" on infinite dimensional spaces, Bull. Amer. (1992).

(4月) (4日) (4日)