How fractal is the sum of two random fractals?

Michel Dekking (TUD) and Károly Simon (TUB) and Bram Kuijvenhoven (TUD) and Henk Don (TUD) and Balazs Szekely (TUB)

WAVELETS & FRACTALS 28/04/2010, ESNEUX

Papers

- On the size of the algebraic difference of two random Cantor sets (with K.Simon). RSA (2008).
- Differences of Random Cantor Sets and the Lower Spectral Radius (with Bram Kuijvenhoven). to appear JEMS (2010).
- ► The algebraic difference of two random Cantor sets: the Larsson family (with Károly Simon and Balázs Székely). to appear AoP (2011)
- ► Correlated fractal percolation and the Palis conjecture (with Henk Don) JSP (2010)

Palis conjecture

Let F_1 and F_2 be Cantor sets. If

$$\dim_{\mathrm{H}} F_1 + \dim_{\mathrm{H}} F_2 > 1$$

then generically it should be true that

 $F_2 - F_1$ contains an interval.

$$F_2 - F_1 := \{ y - x : x \in F_1, y \in F_2 \}$$

Classical middle third Cantor set

$$F^0 = [0, 1]$$

$$\textit{F}^1 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$$

$$\mathit{F}^{2} = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{4}{9}\right] \cup \left[\frac{8}{9}, 1\right]$$

$$F=\bigcap_{n=0}^{\infty}F^{n}.$$

$$\dim_{\mathrm{H}} F = \frac{\log 2}{\log 3}$$

A useful observation

Let $\operatorname{Proj}_{45^{\circ}}(\cdot)$ be the projection on the y axis along lines having a 45° angle with the x-axis. Then $F_2 - F_1 = \operatorname{Proj}_{45^{\circ}}(F_1 \times F_2)$.

At the next level

$$F_1^2 \times F_2^2$$

Slightly smaller intervals, a < 1/3

At the next level, a < 1/3

Random M-adic Cantor sets

 $M \ge 2$: integer

Alphabet: $A := \{0, \dots, M-1\}.$

 μ : probability measure on $2^{2^{\mathbb{A}}}$ "the *joint survival distribution*"

 \mathcal{T} : The *M-ary tree*, i.e., the set of all strings $i_1 \dots i_n$ over \mathbb{A} : *nodes*.

The nodes $i_1 \dots i_n$ are labelled by labels $X_{i_1 \dots i_n}$ from $\{0,1\}$

 \mathbb{P}_{μ} : probability measure on the space $\{0,1\}^{\mathcal{T}}$ of all labelled trees given by

 $\mathbb{P}_{\mu}\left(X_{\emptyset}=1
ight) =1$ and the sets

$$\left\{i_{n+1}\in\mathbb{A}:X_{i_1...i_ni_{n+1}}=1\right\}$$

are i.i.d μ for all $i_1 \dots i_n \in \mathcal{T}$.

Nodes code M-adic intervals

The n-th level M-adic subintervals of [0,1]:

$$I_{i_1...i_n} := \left[\frac{i_1 + \cdots + i_n}{M^n}, \frac{i_1 + \cdots + i_n + i_{n+1}}{M^n}\right] \quad \Leftrightarrow \quad i_1 \dots i_n,$$

for all $i_1 \dots i_n \in \mathcal{T}$.

The *n*-th level surviving nodes:

$$S_n := \{i_1 \dots i_n : X_\emptyset = X_{i_1} = \dots = X_{i_1 \dots i_n} = 1\},$$

The random Cantor set F:

$$F:=\bigcap_{n=0}^{\infty}F^n=\bigcap_{n=0}^{\infty}\bigcup_{i_1...i_n\in S_n}I_{i_1...i_n}.$$

'Marginal' probabilities

The vector of marginal probabilities

$$\mathbf{p}:=\left(p_{0},\ldots,p_{M-1}
ight):\qquad p_{i}:=\mathbb{P}_{\mu}\left(X_{i}=1
ight),\qquad ext{for all }i\in\mathbb{A}.$$

The traditional deterministic triadic (so M=3) Cantor set is obtained with the measure μ defined by $\mu(\{0,2\})=1$, it has vector of marginal probabilities $\mathbf{p}=(1,0,1)$.

EXAMPLE:
$$\mu(\{0\}) = 1/2$$
, $\mu(\{0,2\}) = 1/2 \Rightarrow \mathbf{p} = (1,0,\frac{1}{2})$

The first three levels of a realization of the labeled tree $(X_{i_1...i_n})$ interspersed with the surviving intervals in the approximations F^n :

EXAMPLE: Mandelbrot percolation

also called fractal percolation

Given: a parameter p with $0 \le p \le 1$.

$$\mu(B) = \rho^{\#B} (1 - \rho)^{M - \#B}$$
 for $B \subseteq A$.

Here the marginal probabilities are

$$\mathbf{p}=(p,p,\ldots,p).$$

This is the case where the subintervals are chosen independently and with the same probability.

When is F non-empty?

Branching process: $(\#S_n)$ with offspring: the distribution of $\#S_1$. $F = \emptyset$ if and only if the branching process $(\#S_n)$ dies out.

We have

$$\mathbb{E}_{\mu} \# S_1 = p_0 + \cdots + p_{M-1} = \|\mathbf{p}\|_1.$$

Thus $F \neq \emptyset$ with positive probability if and only if

$$\left\|\mathbf{p}
ight\|_1 > 1 \quad \text{ or } \quad \mathbb{P}_{\mu}(\#S_1 = 1) = 1.$$

Hausdorff dimension of F

THEOREM (Falconer, or Mauldin & Williams, 1986). The Hausdorff dimension of F is equal to

$$\dim_{\mathrm{H}} F = \frac{\log\left(\mathbb{E}_{\mu} \# S_{1}\right)}{\log\left(M\right)} = \frac{\log\left(\|\mathbf{p}\|_{1}\right)}{\log\left(M\right)}$$

with probability one.

When does $F_2 - F_1$ contain an interval?

Define $p_{M+j} = p_j$ for j = 0, 1, ..., M-1. With this we define the *cyclic autocorrelations* γ_k by

$$\gamma_k = \sum_{j=0}^{M-1} p_j p_{j+k}$$
 for $k = 0, \dots, M-1$.

THEOREM

Conditional on $F_1 \neq \emptyset$ and $F_2 \neq \emptyset$

- (a) If $\gamma_k > 1$ for all k then $F_2 F_1$ contains an interval almost surely.
- (b) If there exists a $k \in \{0, \dots, M-1\}$ such that $\gamma_k < 1$ and $\gamma_{k+1} < 1$ then $F_2 F_1$ almost surely does not contain an interval.

REMARKS

 \Box For M=2 the Theorem tells you nothing about the case

$$\gamma_0 > 1, \gamma_1 < 1.$$

 \boxplus For M=3 our Theorem covers all possibilities:

$$\gamma_0 = p_0^2 + p_1^2 + p_2^2,$$

$$\gamma_1 = p_0 p_1 + p_1 p_2 + p_0 p_2,$$

$$\gamma_2 = p_0 p_2 + p_1 p_0 + p_2 p_1.$$

So

$$\gamma_0 \geq \gamma_1 = \gamma_2$$
.

A useful observation, part 2

Remember: $F_2 - F_1 = \text{Proj}_{45^{\circ}} (F_1 \times F_2)$.

Since it is easier to study the 90° projection we rotate the $[0,1]\times[0,1]$ square by 45° in the positive direction and translate it, so that its horizontal diagonal is the x axis.

The *n*-th level (rotated) squares: $Q_{i_1...i_n,j_1...j_n}$.

Any $Q_{i_1...i_n,j_1...j_n}$ is divided into two triangles:

$$R_{i_1...i_n,j_1...j_n}$$
 and $L_{i_1...i_n,j_1...j_n}$.

The orthogonal projection of these Left and Right n-th level triangles are at most $2 \cdot M^n$ intervals.

The proof of the THEOREM is based on an analysis of how the numbers of the R and L triangles grow (jointly) in the vertical columns that project on these intervals.

EXAMPLE with M = 3.

Counting triangles

Let $Z^{RR}(k_1 ... k_n)$ be the number of n^{th} order R-triangles in column $C_{k_1 ... k_n}^R$ on the right side of square Q.

Similarly, $Z^{RL}(k_1 \ldots k_n)$, $Z^{LR}(k_1 \ldots k_n)$ and $Z^{LL}(k_1 \ldots k_n)$.

This is a 2-type (R and L) branching process in a varying environment with neighbour interaction.

No theory!

TRICK: count Δ -pairs, i.e., disjoint pairs of disjoint R- and L-triangles.

Expectation matrices

Let
$$\mathcal{M}(k_1 \dots k_m) :=$$

$$\begin{bmatrix} \mathbb{E} Z^{RR}(k_1 \dots k_m) & \mathbb{E} Z^{RL}(k_1 \dots k_m) \\ \mathbb{E} Z^{LR}(k_1 \dots k_m) & \mathbb{E} Z^{LL}(k_1 \dots k_m) \end{bmatrix}.$$

Then from the definition one can easily check that

$$\mathcal{M}(k_1 \ldots k_m) = \mathcal{M}(k_1) \cdots \mathcal{M}(k_m).$$

Define $Z^R(k) = Z^{RR}(k) + Z^{LR}(k)$, and similarly $Z^L(k)$. This is the number of R-(respectively L)-triangles generated by a Δ -pair in column C_k .

By a geometric observation we obtain that

$$\mathbb{E}Z^{L}(k) = \gamma_{k+1}, \ \mathbb{E}Z^{R}(k) = \gamma_{k}, \text{ i.e. } [\gamma_{k}, \gamma_{k+1}] = [1, 1]\mathcal{M}(k).$$

This is the reason that the numbers γ_k play an important role.

Higher order Cantor sets

Idea: 'collapsing' n steps of the construction into one step. This gives a random M^n -adic Cantor set with joint survival distribution denoted $\mu^{(n)}$.

Alphabet: $\mathbb{A}^{(n)} = \{0, \dots, M^n - 1\}.$ $\mu^{(n)}$ is determined by requiring

$$X_k^{(n)} \sim \prod_{i=1}^n X_{k_1...k_i} = X_{k_1} X_{k_1 k_2} \cdots X_{k_1...k_n},$$

Higher order marginal probabilities:

$$p_k^{(n)} := \mathbb{P}_{\mu^{(n)}} \left(X_k^{(n)} = 1 \right) = \prod_{i=1}^n \mathbb{P}_{\mu} \left(X_{k_1 \dots k_i} = 1 \right) = \prod_{i=1}^n p_{k_i},$$

for all $k = \sum_{i=0}^{n} k_i M^{n-i}$.

Higher order correlation coefficients

- $\gamma_k^{(n)}>1$ for all $k\in\mathbb{A}^{(n)}$, then we are in the 'intervals' case, whereas when
- $\gamma_k^{(n)}, \gamma_{k+1}^{(n)} < 1$ for some $k \in \mathbb{A}^{(n)}$, then we are in the 'no intervals' case.

Can show that

For all $k_1 \dots k_n \in \mathcal{T}$ and $k = \sum_{i=0}^n k_i M^{n-i}$:

$$\begin{bmatrix} \gamma_{k+1}^{\scriptscriptstyle(n)} & \gamma_k^{\scriptscriptstyle(n)} \end{bmatrix} = \begin{bmatrix} 1, \ 1 \end{bmatrix} \mathcal{M}^{\scriptscriptstyle(n)} \left(k \right) = \begin{bmatrix} 1, \ 1 \end{bmatrix} \mathcal{M} \left(k_1 \right) \cdots \mathcal{M} \left(k_n \right).$$

Classifying M=2

Have to find:

$$\min\{\gamma_k^{(n)}:k\in\mathbb{A}^{(n)}\}.$$

This will be very hard for general M, but can be done for M=2.

PROPOSITION Let F_1 and F_2 be two independent identically distributed 2-adic random Cantor sets where $\mathbf{p}=(p_0,p_1)$. If C>1, then F_1-F_2 contains an interval a.s. on $\{F_1-F_2\neq\emptyset\}$. If C<1, then F_1-F_2 contains no interval a.s. Here C is defined by

$$C := p_0 p_1 (1 + p_0^2 + p_1^2).$$

The (p_0, p_1) -plane

The lower spectral radius

 $\|\cdot\|$: a submultiplicative norm on $\mathbb{R}^{d\times d}$

 $\Sigma \subset \mathbb{R}^{d \times d}$: finite set of matrices.

Let

$$\underline{\rho}_n(\Sigma, \|\cdot\|) := \min_{A_1, \dots, A_n \in \Sigma} \|A_1 \cdots A_n\|^{1/n}.$$

The *lower* spectral radius of Σ is

$$\underline{\rho}(\Sigma) := \liminf_{n \to \infty} \underline{\rho}_n(\Sigma, \|\cdot\|).$$

EXAMPLE:
$$\Sigma = \{A\}$$
 then $\underline{\rho}(\Sigma) = \rho(A)$.

The distributed growth condition

More general: two different survival distributions μ and λ .

For $X, Y \subseteq \mathbb{A}$, $e \in \mathbb{A}$:

 $\gamma_e(X,Y)$ is the e^{th} correlation coefficient from the distributions μ^\star and λ^\star assigning probability one to X and Y respectively, i.e.,

$$\gamma_e(X,Y) = \sum_{i \in \mathbb{A}} \mathbf{1}_Y(i) \mathbf{1}_X(i+e). \tag{1}$$

The pair of joint survival distributions (μ, λ) satisfies the distributed growth condition if for all $k \in \mathbb{A} \exists X_k, Y_k \subseteq \mathbb{A}$ with

- (DG0) $\mu(X_k) > 0$ and $\lambda(Y_k) > 0$,
- (DG1) $\min_{e \in \mathbb{A}} \gamma_e(X_k, Y_k) \ge 1$,
- (DG2) $\gamma_k(X_k, Y_k) \geq 2, \ \gamma_{k+1}(X_k, Y_k) \geq 2.$

PROPERTY: μ satisfies the DGC $\Rightarrow \mu^{(n)}$ satisfies the DGC.

A complete classification

when $\mu = \lambda$.

THEOREM

 F_1-F_2 : M-adic independent random Cantor sets F_1 and F_2 whose joint survival distributions satisfy the distributed growth condition, and have equal vectors of marginal probabilities $\mathbf{p}=\mathbf{q}$. Let $\Sigma_{\mathcal{M}}=\{\mathcal{M}\left(0\right),\cdots\mathcal{M}\left(M-1\right)\}$.

- (a) If $\underline{\rho}(\Sigma_{\mathcal{M}}) > 1$, then $F_1 F_2$ contains an interval a.s. on $\{F_1 F_2 \neq \emptyset\}$.
- (b) If $\rho(\Sigma_{\mathcal{M}}) < 1$, then $F_1 F_2$ contains no intervals a.s.

Tsitsiklis & Blondel (1997): NP-hard to approximate $\underline{\rho}(\Sigma_{\mathcal{M}})$ for non-negative matrices.

Larsson's random Cantor set

Given: two positive numbers a and b such that

$$a > \frac{1}{4}$$
 and $3a + 2b < 1$.

$$\dim_{\mathrm{H}} C_{a,b} = -\frac{\log 2}{\log a}$$
 so $a > \frac{1}{4} \Leftrightarrow \dim_{\mathrm{H}} C_{a,b} > 1/2$,

which is equivalent to the Palis condition.

Larsson's random Cantor set 2

THEOREM Let C_1 , C_2 be independent random Cantor sets having the same distribution as $C_{a,b}$. Then the algebraic difference $C_2 - C_1$ almost surely contains an interval.

Open problems

- ▶ What is the Hausdorff dimension of $F_1 F_2$ when there is no interval?
- ▶ Does the spectral radius characterization work if $\mu \neq \lambda$?
- ► Critical case when $\mathbf{p} \neq (p, p, ..., p)$? (equal p_i 's solved: no interval)
- Generalizations of Larsson's random Cantor set?
- ▶ What are the essential ingredients (as e.g. symmetry) that make Palis' conjecture hold?