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Motivation

I This work draws heavy inspiration from a series of papers
in mathematical finance by Aït-Sahalia and Jacod (2008,
2009) that base themselves on the behaviour of structure
functions of Itō semimartingales to build nonparametric test
statistics concerning the type of the Itō semimartingale.

I We wanted to broaden their results to a class of
martingales (the MRW’s of Bacry and Muwy (2002)) that
are not Itō, since indeed the behaviour of the structure
functions of MRW’s or more generally random cascades is
very specific.



Two classes of models for financial prices

Mathematical results

A simulation study



“Mainstream” model for financial prices

Common assumption in financial mathematics: prices are
martingales (unpredictible processes, zero-sum game) or more
generally semimartingales. In practice, most models are
members of the class of Itō semimartingales, ie. sum of
continuous Brownian integral and a jump process:

Xt =

∫ t

0
σsdBs + Jt ,

where the process σ can itself be random and depend on the
Brownian motion B and the jump process J. This gives a very
large class of models, which can take into account a wide
range of statistical regularities observed in practice.
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Statistical tests for the type of an Itō semimartingales

We may then want to decide which type of Itō semimartingale is
in adequation with our data. Is the jumps part zero? is the
Brownian part zero?
Aït Sahalia and Jacod (2008, 2009) construct nonparametric
tests for answering these questions that are based on the
behaviour of structure functions

SN(p) =
N−1∑
k=0

|X(k+1)/N − Xk/N |p

I if X has no jumps, SN(p) ∼ N1−p/2 for p ≥ 0
I if X has jumps, SN(p) ∼ Nmax(0,1−p/2) for p ≥ 0.
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Multifractal models for financial prices
I Mandelbrot (1997): prices behave as Xt = Bθt , where θ is a

positive, continuous, increasing "cascade" process
independent of the Brownian motion B and such that
E[(θt+s − θt)

p] = E[|Xt+s − Xt |2p] ≈ c2psζ2p as s → 0. In
contrast with Itō semimartingales, p 7→ ζp is a strictly
concave function with ζ0 = ζ2 = 0.

I Construction of a dyadic cascade: Take some iid positive
random variable Wi , i ∈ {0,1}n, n ∈ N such that
E[Wi ] = 1. Define for 0 ≤ t ≤ 1

θ1
t =

∫ t
0( W01u∈[0,1/2] + W11u∈(1/2,1] )du

θ2
t =

∫ t
0( W0W001u∈[0,1/4] + W0W011u∈(1/4,1/2]

+ W1W101u∈(1/2,3/4] + W1W111u∈(3/4,1] )du
. . .

Then θn → θ as n→ +∞ (Kahane and Peyrière 1976).
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Multifractal martingales
I Calvet and Fisher (2001), Barral and Mandelbrot (2002),

Bacry and Muzy (2002): grid-free, stationary construction
of a cascade process. Idea: replace the iterated
multiplication of iid positive random variables with the
exponential of a Lévy process.

I The MRW of Bacry and Muzy has the nice scaling
property: for r ∈ [0,1]

(Xrt , 0 ≤ t ≤ L)
d
= r1/2eWr (Xt , 0 ≤ t ≤ L),

where Wr is an infinitely divisible random variable
independent of X .

I All classes of cascades θ have the property of being
increasing processes that are not absolutely continuous
wrt the Lebesgue measure. It follows that Xt = Bθt cannot
be written as a Brownian integral

∫ t
0 σsdBs: X is a

continuous martingale that is not Itō.
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General approach

Our aim is to complete the results of Aït-Sahalia and Jacod by
taking into account the possibility that X may be an MRW.

I Abry, Jaffard, Roux and Wendt (2007, 2008) give a long
and numerically involved study of how to estimate the
scaling exponent ζp in practice. One should use wavelet
leaders and log-cumulants rather than increments and
structure functions.

I We however manage to prove a CLT for the structure
function of an MRW, which would be difficult to achieve for
log-cumulants and/or wavelet leaders.

This enables us to propose consistent nonparametric tests for
H0: "X is Itō" against H1: "X is an MRW" and conversely. This is
not testing multifractality: there are some Itō semimartingales
with nondegenerate singularity spectrum (Jaffard, 1997).



Case H0: X is Itō

Proposition 1 (Aït-Sahalia and Jacod)
If X is Itō with no jumps, then√

7
32

SN(4)

(SN(8))1/2 (
SN/2(4)

SN(4)
− 2)

L→ N(0,1).

From the strict concavity of p 7→ ζp, the same quantity goes to
+∞ if X is an MRW. However, it goes to an unobservable
random variable if X is Itō with jumps.



Test for H0: X is Itō

Let (kN) be a sequence such that kN ≤ 1, kN → 1 and
(1− kN) log(N)→ +∞.

Theorem 1
Define

T Ito
N =

√
7
32

NkN−1
SbNkN c(4)

(SN(8))1/2 (
SN/2(4)

SN(4)
− 2).

Then if X is Itō with jumps, T Ito
N → 0 in probability. If X is Itō

with no jumps, T Ito
N
L→ N(0,1). If X is an MRW, T Ito

N → +∞ in
probability.



Case H0: X is an MRW

Proposition 2
If X is an MRW, then

√
3√

2(2ζ4−1)

SN(2)− SN/2(2)√
SN(4)

L→ N(0,1).

If X is Itō with jumps, this quantity goes to 0. However, if X is
Itō with no jumps, this quantity is of order 1.
Remark: Ossiander and Waymire (2000) and Ludeña (2008)
also prove CLT’s for random cascades, but these CLT’s
comport unobserved centering terms, which makes them hard
to use for building statistical tests.
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Test for the case H0: X is an MRW

Theorem 2
Choose c ∈ (0,1) and define

T MRW
N =

√
3√

2(2ζ4−1)
N(1−c)ζ4/2 SN(2)− SN/2(2)√

SbNcc(4)

Then if X is Itō, T MRW
N goes to 0 in probability. If X is an MRW,

then T MRW
N

L→ N(0,1).



Sketch of a proof for Proposition 2

1. N−1+ζpSN(p)→ θ(p) as N → +∞ (Ludeña 2008, D. 2009).
In the case p = 2, θ(2) is simply the same as θ.

2. Define

ξN,1
k = Nζ4/2((X2k/N − X(2k−1)/N)2

+(X(2k−1)/N − X(2k−2)/N)2 − (θ2k/N − θ(2k−2)/N)
)

and

ξN,2
k = Nζ4/2((X2k/N − X(2k−2)/N)2 − (θ2k/N − θ(2k−2)/N)

)
.

Then (
∑n

k=1 ξ
N,1
k ,

∑n
k=1 ξ

N,2
k )n is a 2d martingale.

3. Check that the Lindeberg condition holds and apply a
martingale CLT (Jacod and Shiryaev 2002).
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Preliminary considerations

I In the case of H0: X is an MRW, the test statistics uses the
unknown quantity ζ4. In practice, it should been estimated
from the data (cf. Abry et al.), which raises the question of
the behaviour of the estimator of ζ4 when X is Itō...

I We present some simulation results when the data is either
a lognormal MRW, or a Brownian motion with some
random jumps.
In the case of a Brownian motion with no jumps, we can
show that our test would need a huge number of data
(N >> 109) to perform well, even when ζ4 is known.



Choice of the Itō semimartingale
Standard Brownian motion with a few (≈ 30) large jumps
uniformly distributed on [−1/2,1/2].
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Choice of the MRW
Lognormal MRW with intermittency coefficient 0.025
(ζp = −0.025p2 + 0.55p).
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Test results for 1 000 simulations of either an MRW, or
an Itō semi-martingale

Rejection rates of H0 : X is an MRW when MRW’s are
simulated

Level of the test
N 90% 95% 99%
2048 9.6% 4.2% 1%
16384 8.9% 5.1% 1%
131072 9.4% 5% 0.7%

Rejection rates of H0 : X is an MRW when Itō semimartingales
are simulated

Level of the test
N 90% 95% 99%
2048 43.6% 23.3% 4.4%
16384 92.4% 65% 16.6%
131072 99.6% 98.6% 40.5%
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