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Introduction and Motivations



The Linear Multifractional Stable Motion

Definition 1.1 (Stoev & Taqqu'04)

Let 1 < o <2 and H(-) be a functional parameter with values in
[a,b] C (1/a, 1). The Linear Multifractional Stable Motion (LMSM)
process Y (t) can be expressed by

Y(t) = X(t, H(t)), (1)

X ={X(u,v) : (u,v) €R x (1/a,1)} being the StaS field defined for
all (u,v) as the stochastic integral:

X(u,v) = / {(w=9)" = (=)} Zu (). ®)



Stoev and Taqqu's results : Continuity

K denotes a fixed compact interval.

Theorem 1.1 (Stoev and Taqqu '05)

Let o € (1,2) and Y = {Y(t)}ter be a LMSM whose parameter H(-)
satisfies for all t |t € K,

‘H(t’) —H(t)| < c|t = ¢"1P with p > 1/a, (3)

¢ > 0 being a constant which does not depend on t,t . Then, with
probability 1 (w.p.1) the process Y has continuous paths on K.

Conjecture : The continuity of the paths of LMSM holds as long as H(-)
is continuous. By using Daubechies wavelets, we will prove that this
Stoev and Taqqu's conjecture is true.



» The conjecture has already been solved in the Gaussian case i.e.
a = 2 (Ayache and Taqqu '05).

» Our wavelet method also allow to improve some Stoev and Taqqu'’s
results concerning the uniform Holder regularity of LMSM paths.

Recall that:

(a) Holder Space : for every v € [0, 1], the space of real-valued ~-Hdlder
functions on the interval I, is the Banach space

CT(K,R)={f:K—=R:0,(f) < o0}, (4)
where o (f) 1= sup,cc |[f(X)| + sup, yexc % is the natural

norm;

(b) The (critical) Holder exponent of a continuous and
non-differentiable function g over K is defined as

Bg(K) :=sup{y : g € C" (K,R)}.



Theorem 1.2 (Stoev and Taqqu '05)
When H(-) belongs to the Holder space CP(K,R) with
B > H* := maxcec H(t) then

H* - 1/0‘ S ﬂY(IC) S H*7

where H, := min;cx H(t).

Goal : We will give a sharp modulus of continuity of the paths of Y and
consequently prove that almost surely (a.s.) 8y (K) = H, — 1/a.
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Wavelet series representation of LMSM



We denote by 1) be a compactly supported C3 Daubechies mother
wavelet.

Definition 2.1 N
For any (x,v) € R x (1/a, 1), we define the function W and V by

2

Wiv) = [TV 0y, Bxw) = 5 [ - ) dy.
©)

Proposition 2.1

> W and U are C3(R x (1/a, 1)), and are infinitely differentiable with
respect to v.

> U W as well as all their partial derivatives of any order are
well-localized in x uniformly in v. ie for all p € {0,1,2,3} and all
q € N then

sup sup (|(8§8“,’\U)(X, v)| + ‘(8535@)()(, v)|> (14 |x])? < oco.

ve[l/a,1] xER



We denote by {€ « : (j, k) € Z x Z} the sequence of Strictly a—Stable
random variable defined as

- /R 2025 — k) Zo(ds), (6)

Observe that for every fixed integers j, m and r satisfying

m > diam(supp ) and 0 < r < m, {€j,r4m : | € Z} is a sequence of
independent random variables; this is a consequence of the fact that the
functions (2 - —ml), | € Z, have disjoint supports.

Lemma 2.1 (Ayache, Roueff, Xiao'09)

There exists an event 2 of probability 1, such that for any n > 0, any
w € Qf and for all (j, k) € Z x Z, we have

k(W) < CW)L+ UNYH(L+ k)Y logh (2 + [kI),  (7)

where C > 0 is an almost surely finite random variable, only depending
on 1.



There is no restriction to assume that K = [-M, M], where M is some
positive fixed real-number.

Theorem 2.1

(i) The field {X(u,v) : (u,v) € K x [a, b]} can almost surely be
expressed as

X(uv)= lim Y ej,k2_j"(lll(2ju—k,v)—\ll(—k7v))7(8)

n—+o00
(j’k)eDn,M
where D, v = {(j, k) € Z? : |j| < n and |k| < M2} and where
the convergence holds for every v < a — 1/« in the sense of the
norm of the Banach space E, := C([a, b],C"(K,R)) of the
Lipschitz functions defined on [a, b] and with values in the Hélder
space C7(IC,R).



(i) With probability 1, for all fixed u € R, v — X(u,v) isa C*
function over (1/c, 1), moreover for each g € N, the field
{(09X)(u,v) : (u,v) € K x[a, b]} can almost surely be expressed as

@) (w.v)= im Y J,kz( ) ~jlog2)?

(j,k)GD,, M

2 (037 PW)(2u — K, v) — (92 PW)(—k, V),

where the convergence holds for every v < a — 1/« in the sense of
the norm of the Banach space E,.



Any function F in the Banach space E, can be viewed as a real-valued
function defined on K X [a, b] and then || F|| its norm in this space is
equivalent to the norm

|[F(u,v) = F(ua, V)|

sup |F(u,v)|+ sup ,y
(u,v)EKX[a,b] (u1,u2,v)EK2 X [a,b] |ug — o]
F - F
s ) Fww)
(u,vi,v2)EK X [a,b)? ‘Vl - V2|

i sup |F(u1, vi) — F(ui,vo) — F(u2, vi) + F(u2, v)]
(u1,u2,v1,v2)€K2 % [a,b]? ‘Ul - uszl — v2|




Corollary 1

There is a random variable C > 0 such that a.s. for all vi,v» € [a, b] one
has

su][é|X(u,v1)—X(u,v2)\§C|v1—v2\. (9)
ue

Corollary 2

By replacing (u, v) by (t, H(t)) and [a, b] by [H., H*], one can get, in
view of (1), a random wavelet series representation of Y, the LMSM,
which is a.s. convergent in all the Hélder spaces C7(K,R) of order

v < min{H, — 1/a, Bu(K)}.

Thus, By (K), the critical uniform Hélder exponent of the trajectories of
Y satisfies a.s. By(K) > min{H, — 1/a, Bn(K)}.



Sketch of proof

For every fixed (u,v) € K x [a, b], we set s — (u — )" /* — (—s)4 "/

belongs to L%(R) N L2(R) then

(u—s)" = (=) = 3 Kjulu,v)vuls).  (10)

J,kez?

Using the L2(R)—orthonormality of the sequence
{20(/2=1/ )y o (j, k) € 72}, we have

rj k(U v) = 2"“’1/“)/R ((u — ) - (—5)1_1/“) (s — k)ds
=27 M{W(2u— k,v) — V(—k,Vv)}.

We obtain the following random wavelet serie :

> 2V (Du—k,v) = W(—k,v)}. (11)
(,k)ez?
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Modulus of Continuity



Proposition 3.1
Let Qf be the event of probability 1, defined at the Lemma 2.1. Then for
every compact set L C R, for all w € 2, g € N, and any arbitrarily
small n > 0, one has :

|(63X)(tv va) - (agx)(sv va)|

sup — < 00. (12)
(tsv)ekexlab] |t — |V (14 |log |t — s|[)9T¥/ "

Theorem 3.1

Let Qf be the event of probability 1 that will be introduced in the
Lemma 2.1. For any arbitrarily small n > 0 and all w € Qf , there is a
random variable C > 0 such that for all t,s € KC, one has

Y (t.w) = Y(s,0)| £ Cw) { |t — smexHE-HO}-1/0

(1+ [log|e = s|[)/**" + [H(t) — H(s) |}



(A) : there exists 3 > H* such that H(-) € C°(K,R)

Corollary 3.1

Under the condition (A) one has for all arbitrarly small n > 0 and
w € Qg,

sup |Y(t7w) 7 Y(va)|
tsek |t — S|max{H(s),H(t)}—1/o¢ (1+ |log|t — s||)2/°‘+’7

and as consequence

N Y (t,0) ~ Y(s,) o
P H.—1/a 2/a+n
t,sek |t — s|H- (14 |log |t —s]])




Optimality of modulus of continuity

Theorem 3.2

Let us set p :=

sup {0 € Ry : Ity € K satisfying H(ty) = H. and sup,cx W < oo}.
and T = 712?_‘;1. Then, under the condition (A), for all ¢ > 0, one has,

almost surely,

Y(t)—-Y(s
OO
tsek |t — s|™ (1+ |log|t —s]|)

8

(13)



Sketch of proof

X (£ v,w) — X(s,vow)] < C(w) 37 274 [YYH(1 + [k
j,kez?

x log!** (2 + |k|)|W(2t — k,v) — W(Ds — k,v)|
We need to control the following quantity :
|W(2t — k,v) — V(s — k,v)|
1. For all (j, k) € Z?, we have
W(2t—k,v)—W(Zs—k,v)| <t {(2+ 2t — k|) 2+ (2+ |2s — k|)?}.
2. If the following hypothesis holds 2/|t — s| < 1 then
W(2t — k,v) —W(2s — k,v)| < 2|t —s|(2+ |2t — k|)~2

Introduce jo the unique integer such that 1/2 < 20|t —s| < 1



[X(t,v,w) = X(s, v, w)| < G(w) (A (8, V)|t = s| + By (t,5,v))  (14)

with

(1 . 1+ k)Y logt*1(2 + |k|)
A(tv) = 320 e 3 -
(e =3 ¥ b e

Bi(t,s,v) = > 271+ )1+ k) log! * (2 + [k|)
Jj>jo+1 keZ

x {242t —k|)2+ 2+ [Zs — k|)7?}
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