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Local singular behaviors of signals
(B. Torresani, Y. Meyer)

f(x) — f(x0) ~ |x — Xp|* sin <|x1x0|5>



Types of pointwise singularities
Cusps : f(x) — f(x0) = |x — Xo|®

Chirps : f(x) — f(x0) = |x — Xxo|* sin <|X—1X0|B>

We look for this typical behavior (not the exact form)
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Spectrum of singularities

The Hélder exponent of f at xg is
hi(xo) =sup{a: fe C%xo)}.
The Iso-Hdélder sets of f are

En={x: hi(xo)=H}.

The spectrum of singularities of a function f is
df(H) = dim (E,L/)

where dim stands for the Hausdorff dimension.



Wavelet techniques
(initiated by A. Arneodo et al.)

A wavelet basis on R is generated by a smooth, well localized,
oscillating function ¢ such that the

207242/ x — k), jkeZ
form an orthonormal basis of L?(R).
Notations :

. o [k k+1
Dyadic intervals : A = Lj, 2].[
Wavelet coefficients :  ¢jx = ¢y = 2//f(x)1p(2/x — K)dx

If a(x) =¢(@x—k), then f(x)=> criha(x).
A



Wavelet leaders

Let A\ be a dyadic cube ; 3\ is the cube of same center and three
times wider.

Let f be a bounded function ; the wavelet leaders of f are the
quantities

Lx= sup [cv|
A C3A



Wavelet leaders

Let A\ be a dyadic cube ; 3\ is the cube of same center and three
times wider.

Let f be a bounded function ; the wavelet leaders of f are the
quantities

Lx= sup [cv|
A C3A

Notations : Let x; € R? .
Aj(xo) is the dyadic cube of width 27/ which contains xg

L/(XO) = L>\j(Xo) = Sup |C/\’|'
X C3)(%0)



Wavelet leaders

d) =sup,., 5,19 o, K)

A function f is uniform Holder if f € C¢ forane > 0, i.e.
IC>0: Vj, ey < C.279.

Characterization of pointwise smoothness : If f is uniform Holder,

then 10a(Li(x0))
g o log(Li(x
Vxp € R hf(XO) = lILnJCI;]j |Og(27/) .

Lj(XO) ~ 2 hi(x0)j



Multifractal formalism
( G. Parisi, U. Frisch, A. Arneodo, S. Jaffard, ....)
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Multifractal formalism
( G. Parisi, U. Frisch, A. Arneodo, S. Jaffard, ....)

N={r: =27}

Tp,j — o= Z(d/\)p ~ 2 (P

)\E/\/‘

n¢(p) is the leader scaling function

The Legendre spectrum of f is

£(H) = inf (d + Ho—n(p)

The wavelet leaders multifractal formalism holds if

di(H) = inf (d + Hp — ns(p))

inf
pPER



Multifractal analysis of paintings :
The Van Gogh challenge

Collaboration with D. Rockmore (Dartmouth) and H. Wendt (Purdue)

1-5-RGB-1-CH0-j=[3,7]

Van Gogh (f415) Arles -Saint Rémy



» {799 (Van Gogh)

2.5¢

0.5¢

2-4-RGB-1-CHO-j=[3,7]




Unknown (f248a)

3-13-RGB-1-CHO--{3,7]




Princeton Experiment

e Experiment design :
- same Painter (Charlotte Casper) does Original and Copies
- a series of 7 small paintings,
- different set of materials (various brushes, grounds, paints)
- Original and Copies with same set of materials
- high resolution digitalisation, under uniform conditions.

e Description :

Pair | Ground Paint Brushes
1 CP Canvas Oils S&H
2 CP Canvas Acrylics S&H
3 Smooth CP Board Oils S& H
4 Bare linen canvas Oils S
g Chalk and Glue Oils S
6 CP Canvas Acrylics S
7 Smooth CP Board Oils S




Charlotte2’s Original & Copy
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Multifractal analysis of oscillating singularities
Cusps : f(x) — f(x0) = |x — xo|"

After one integration : f(=1)(x) — f(=")(xg) ~ % |x — xo|F*"

Chirps : f(x) — f(x0) = Ix — x| sin (|X—1XO|B)

After one integration :

_ xp |HH(1+8) 1
H=D(5) — D () = X=X 1
(%) (x0) 3 cos X = XolP +
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Fractional Integration
The fractional integral of order s is the operator Z° satisfying

Tf(€) = (1 + [¢P) /2 F(¢)
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Fractional Integration
The fractional integral of order s is the operator Z° satisfying
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Definition : Let f : R — R be a locally bounded function.
The oscillation exponent of f at xg is
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Fractional Integration
The fractional integral of order s is the operator Z° satisfying
Tof() = (1 + €)% 1(&)
» If fis acusp at xg, then hzs¢(xo) = hs(Xxo) + s

» If fis a chirp at xp, then hzs¢(x0) = hi(x0) + (1 + 5)s

Definition : Let f : R — R be a locally bounded function.
The oscillation exponent of f at xg is

Br(x0) = (8(h15;(x0))) T 1

f has a cusp at xg if B¢(xp) = 0. It follows that

hrs¢(x0)) = he(x0) + s



Pseudo-fractional integration
Heuristic :
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The pseudo-fractional integral of order s, denoted by 7°(f) consists
in replacing the wavelet coefficients ¢, by 2-9c,.



Pseudo-fractional integration
Heuristic :

)= ¢l v'(2x—k)
ik

]

Zc 279 (")) (2Ix — k)

The pseudo-fractional integral of order s, denoted by 7°(f) consists
in replacing the wavelet coefficients ¢, by 2-9c,.

Theorem : If f is uniform Hélder, then Z5(f) and [75(f) share the
same pointwise exponents and spectra
Algorithm :

» Operate pseudo-fractional integration of order s
» Perform the multifractal analysis of this new function

One obtains the integrated Legendre spectrum : LF(H) = L7, (H)



Fractionally integrated spectra

Definition : The integrated spectrum of f is

dS(H) = dys=r(H)



Fractionally integrated spectra

Definition : The integrated spectrum of f is
df(H) := drs¢(H)

If all points are cusps, then the integrated spectrums of singularities
are shifted

d5(H) = dy(H - s)

Heuristics :

If all points are cusps, then the integrated Legendre spectrums are
shifted



Fractionally integrated spectra
Definition : A uniformly Hélder function f is of cusp type

YA, N CA J =j+0(j) et |ev|> L2 0
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Proposition : Si f is uniformly of cusp type then the integrated
Legendre spectra satisfy
L3(H) = Lzs¢(h) = L+(H — )

Exemples : FBM, Random Wavelet cascades of A. Arneodo, The
measure-based random wavelet series of J. Barral and S. Seuret,...



Fractionally integrated spectra
Definition : A uniformly Hélder function f is of cusp type

YA, N CA J =j+0(j) et |ev|> L2 0

Proposition : Si f is uniformly of cusp type then the integrated
Legendre spectra satisfy

L3(H) = Lzs¢(h) = L+(H — )

Exemples : FBM, Random Wavelet cascades of A. Arneodo, The
measure-based random wavelet series of J. Barral and S. Seuret,...

Heuristics :

Cusps= Signature of clustering of large wavelet coefficients
Oscillating singularities= Dispersion of large wavelet coefficients

Problem : Oscillating singularities can be present even if the
integrated Legendre spectra are shifted



The (-spectrum

The iso-oscillating sets are
Fo = {x Bi(x) = B}

The [-spectrum is
D¢() = dim(Fp)
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Heuristic : Let s “small enough ” be given. If f has an oscillating
singularity of exponents (H, 3) at xp, then
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The (-spectrum

The iso-oscillating sets are
Fs ={x: B:(x) = B}

The (-spectrum is
Di(B) = dim(Fz)

Heuristic : Let s “small enough ” be given. If f has an oscillating
singularity of exponents (H, 3) at xp, then

Lyoo)(D)(x0) ~ 27 and Ly () (Z5f) ~ 27 Hs0+0))

The p-leaders by

1/s
B, — of [ Pua @)} T g,
Ly, x)()(X0)



The g-formalism

The g-structure function is B,; =2-9 > "(By)P
)\G/\/‘
The -scaling function is

T |°9(Bp,j)
<P =M Tog(2-))
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The g-formalism

The g-structure function is B,; =2-9 > "(By)P
)\G/\/‘
The -scaling function is

wi(p) = “gllgf Elimgj log(2~/)

The 3-formalism holds if

Dy(8) = int (d + 5p - wi(p))

Heuristic : 1f D¢(3) is supported by a point, then one expects that
there are no oscillating singularities



The g-formalism

The g-structure function is B,; =2-9 > "(By)P
)\G/\/‘
The -scaling function is

e 10g(Bpy)
wi(p) = liminf timint 2057

The 3-formalism holds if

Dy(8) = int (d + 5p - wi(p))

Heuristic : 1f D¢(3) is supported by a point, then one expects that
there are no oscillating singularities

Theorem :

» If fis of cusp-type, then D¢(73) is supported by a point
» The g-formalism holds for lacunary wavelet series



The grandcanonical formalism

Spectrum of oscillating singularities

Dy(H, B) = dim({x : hi(x) = H et Bi(x) = 4}



The grandcanonical formalism

Spectrum of oscillating singularities
Df(H,B) = dim({xo : ht(x0) = H et Bi(x0) = 5})
If f has an oscillating singularity of exponants (H, 3) at xp, then

L/\j(Xo) ~2 M and B)\/.(Xo) ~ 20



The grandcanonical formalism

Spectrum of oscillating singularities
D(H, 3) = dim({xo : hi(x0) = H et Bi(x) = 3})
If f has an oscillating singularity of exponants (H, 3) at xp, then
Loy ~ 277 and By () ~277.

The grandcanonical structure function is

Gpgj=27 Z(L/\)p(B/\)q

)\E/\j

The grandcanonical scaling function is

e log(Gp )
vp.q € R, Q(p,q) = liminf }'EL'QJ log(2—/)




The grandcanonical formalism
Spectrum of oscillating singularities
Di(H, B) = dim({xo : hi(x0) = H et Bi(x0) = 5})
If f has an oscillating singularity of exponants (H, 3) at xp, then
Loy ~ 277 and By () ~277.

The grandcanonical structure function is

Gpgj=27 Z(L/\)p(B/\)q
)\E/\j

The grandcanonical scaling function is

e log(Gp )
vp.q € R, Qilp.q) =limint liminf 300 ZEY

The grandcanonical multifractal formalism holds if

Df(H, B) = p_qieq,gﬂ (d+ Hp + 39 — Q¢(p, q))



Theorem :
The grandcanonical multifractal formalism holds for cusp-type
functions and for lacunary wavelet series
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Theorem :
The grandcanonical multifractal formalism holds for cusp-type
functions and for lacunary wavelet series

Challenges :

Turbulence
Oscillating singularities on sets of small dimension

Alternative stochastic processes which display
oscillating singularities

Heuristic : oscillating singularities are present when wavelet
coefficients are both sparse and dispersed without interscale
correlations



