Multifractal formalisms for oscillating singularities

Stéphane Jaffard

Joint work with Patrice Abry and Stéphane Roux (ENS de Lyon)

Wavelets and Fractals Esneux, April 26-28 2010

 $\sim\sim\sim$

What are oscillating singularities?

What are oscillating singularities?

Signals whose instantaneous frequency changes

Examples:

- Ultrasonic signals emmitted by bats
- Gravitational waves
- Structures predicted in fully developed turbulence
- **>** ...

What are oscillating singularities?

Signals whose instantaneous frequency changes

Examples:

- Ultrasonic signals emmitted by bats
- Gravitational waves
- Structures predicted in fully developed turbulence
- **>** ...

Local singular behaviors of signals (B. Torresani, Y. Meyer)

$$f(x) - f(x_0) \sim |x - x_0|^{\alpha} \sin\left(\frac{1}{|x - x_0|^{\beta}}\right)$$

Types of pointwise singularities

Cusps:
$$f(x) - f(x_0) = |x - x_0|^{\alpha}$$

Chirps:
$$f(x) - f(x_0) = |x - x_0|^{\alpha} \sin\left(\frac{1}{|x - x_0|^{\beta}}\right)$$

We look for this typical behavior (not the exact form)

Spectrum of singularities

The Hölder exponent of f at x_0 is

$$h_f(x_0) = \sup\{\alpha: f \in C^{\alpha}(x_0)\}.$$

The Iso-Hölder sets of f are

$$E_H = \{x_0 : h_f(x_0) = H\}.$$

The spectrum of singularities of a function f is

$$d_f(H) = dim(E_H)$$

where dim stands for the Hausdorff dimension.

Wavelet techniques

(initiated by A. Arneodo et al.)

A wavelet basis on $\mathbb R$ is generated by a smooth, well localized, oscillating function ψ such that the

$$2^{j/2}\psi(2^jx-k), \qquad j,k\in\mathbb{Z}$$

form an orthonormal basis of $L^2(\mathbb{R})$.

Notations:

Dyadic intervals :
$$\lambda = \left\lceil \frac{k}{2^j}, \frac{k+1}{2^j} \right\rceil$$

Wavelet coefficients :
$$c_{j,k} = c_{\lambda} = 2^j \int f(x) \psi(2^j x - k) dx$$

If
$$\psi_{\lambda}(x) = \psi(2^{j}x - k)$$
, then $f(x) = \sum_{\lambda} c_{\lambda}\psi_{\lambda}(x)$.

Wavelet leaders

Let λ be a dyadic cube; 3λ is the cube of same center and three times wider.

Let f be a bounded function; the wavelet leaders of f are the quantities

$$L_{\lambda} = \sup_{\lambda' \subset 3\lambda} |c_{\lambda'}|$$

Wavelet leaders

Let λ be a dyadic cube; 3λ is the cube of same center and three times wider.

Let f be a bounded function; the wavelet leaders of f are the quantities

$$L_{\lambda} = \sup_{\lambda' \subset 3\lambda} |c_{\lambda'}|$$

Notations : Let $x_0 \in \mathbb{R}^d$

 $\lambda_j(x_0)$ is the dyadic cube of width 2^{-j} which contains x_0

$$L_j(x_0) = L_{\lambda_j(x_0)} = \sup_{\lambda' \subset 3\lambda_j(x_0)} |c_{\lambda'}|.$$

Wavelet leaders

A function f is uniform Hölder if $f \in C^{\varepsilon}$ for an $\varepsilon > 0$, i.e.

$$\exists C > 0 : \forall j, |c_{\lambda}| \leq C \cdot 2^{-\varepsilon j}.$$

Characterization of pointwise smoothness: If *f* is uniform Hölder, then

$$\forall x_0 \in \mathbb{R}^d$$
 $h_f(x_0) = \liminf_{j \to +\infty} \frac{\log(L_j(x_0))}{\log(2^{-j})}.$ $L_j(x_0) \sim 2^{-h_f(x_0)j}$

Multifractal formalism

(G. Parisi, U. Frisch, A. Arneodo, S. Jaffard,)

$$\Lambda_j = \{\lambda : |\lambda| = 2^{-j}\}$$

$$T_{p,j} = 2^{-dj} \sum_{\lambda \in \Lambda_j} (d_{\lambda})^p \sim 2^{-\eta_t(p)j}$$

Multifractal formalism

(G. Parisi, U. Frisch, A. Arneodo, S. Jaffard,)

$$\Lambda_j = \{\lambda : |\lambda| = 2^{-j}\}$$

$$T_{p,j} = 2^{-dj} \sum_{\lambda \in \Lambda_j} (d_{\lambda})^p \sim 2^{-\eta_f(p)j}$$

 $\eta_f(p)$ is the leader scaling function

Multifractal formalism

(G. Parisi, U. Frisch, A. Arneodo, S. Jaffard,)

$$\Lambda_j = \{\lambda : |\lambda| = 2^{-j}\}$$

$$T_{p,j} = 2^{-dj} \sum_{\lambda \in \Lambda_j} (d_{\lambda})^p \sim 2^{-\eta_t(p)j}$$

 $\eta_f(p)$ is the leader scaling function

The Legendre spectrum of f is

$$\mathcal{L}_f(H) = \inf_{p \in \mathbb{R}} (d + Hp - \eta_f(p))$$

The wavelet leaders multifractal formalism holds if

$$d_f(H) = \inf_{p \in \mathbb{R}} (d + Hp - \eta_f(p))$$

Multifractal analysis of paintings: The Van Gogh challenge

Collaboration with D. Rockmore (Dartmouth) and H. Wendt (Purdue)

Van Gogh (f415) Arles -Saint Rémy

► f799 (Van Gogh)

Unknown (f248a)

Princeton Experiment

- Experiment design :
 - same Painter (Charlotte Casper) does Original and Copies
 - a series of 7 small paintings,
 - different set of materials (various brushes, grounds, paints)
 - Original and Copies with same set of materials
 - high resolution digitalisation, under uniform conditions.

Description :

Pair	Ground	Paint	Brushes
1	CP Canvas	Oils	S& H
2	CP Canvas	Acrylics	S& H
3	Smooth CP Board	Oils	S& H
4	Bare linen canvas	Oils	S
5	Chalk and Glue	Oils	S
6	CP Canvas	Acrylics	S
7	Smooth CP Board	Oils	S

Charlotte2's Original & Copy

Multifractal analysis of oscillating singularities

Cusps: $f(x) - f(x_0) = |x - x_0|^H$

After one integration : $f^{(-1)}(x) - f^{(-1)}(x_0) \sim \frac{1}{H}|x - x_0|^{H+1}$

Chirps: $f(x) - f(x_0) = |x - x_0|^H \sin\left(\frac{1}{|x - x_0|^\beta}\right)$ After one integration:

$$f^{(-1)}(x) - f^{(-1)}(x_0) = \frac{|x - x_0|^{H + (1+\beta)}}{\beta} \cos\left(\frac{1}{|x - x_0|^{\beta}}\right) + \cdots$$

The fractional integral of order s is the operator \mathcal{I}^s satisfying

$$\widehat{\mathcal{I}^sf}(\xi) = (1+|\xi|^2)^{-s/2} \, \hat{f}(\xi)$$

The fractional integral of order s is the operator \mathcal{I}^s satisfying

$$\widehat{\mathcal{I}^sf}(\xi) = (1+|\xi|^2)^{-s/2} \, \widehat{f}(\xi)$$

- ▶ If f is a cusp at x_0 , then $h_{\mathcal{I}^{s_f}}(x_0) = h_f(x_0) + s$
- ▶ If f is a chirp at x_0 , then $h_{\mathcal{I}^s f}(x_0) = h_f(x_0) + (1 + \beta)s$

The fractional integral of order s is the operator \mathcal{I}^s satisfying

$$\widehat{\mathcal{I}^sf}(\xi) = (1+|\xi|^2)^{-s/2} \hat{f}(\xi)$$

- ▶ If f is a cusp at x_0 , then $h_{\mathcal{I}^{s_f}}(x_0) = h_f(x_0) + s$
- ▶ If f is a chirp at x_0 , then $h_{\mathcal{I}^s f}(x_0) = h_f(x_0) + (1 + \beta)s$

Definition: Let $f: \mathbb{R} \to \mathbb{R}$ be a locally bounded function. The oscillation exponent of f at x_0 is

$$\beta_f(x_0) = \left(\frac{\partial (h_{\mathcal{I}^{s}f}(x_0))}{\partial s}\right)_{s=0^+} - 1$$

The fractional integral of order s is the operator \mathcal{I}^s satisfying

$$\widehat{\mathcal{I}^sf}(\xi) = (1+|\xi|^2)^{-s/2} \, \widehat{f}(\xi)$$

- ▶ If f is a cusp at x_0 , then $h_{\mathcal{I}^{s_f}}(x_0) = h_f(x_0) + s$
- ▶ If f is a chirp at x_0 , then $h_{\mathcal{I}^s f}(x_0) = h_f(x_0) + (1 + \beta)s$

Definition: Let $f: \mathbb{R} \to \mathbb{R}$ be a locally bounded function. The oscillation exponent of f at x_0 is

$$\beta_f(x_0) = \left(\frac{\partial (h_{\mathcal{I}^s f}(x_0))}{\partial s}\right)_{s=0^+} - 1$$

f has a cusp at x_0 if $\beta_f(x_0) = 0$. It follows that

$$h_{\mathcal{I}^{s}f}(x_0)) = h_f(x_0) + s$$

Heuristic:

$$f(x) = \sum_{j} \sum_{i,k} c^{i}_{j,k} \ \psi^{i}(2^{j}x - k)$$

Heuristic:

$$f(x) = \sum_{j} \sum_{i,k} c^{i}_{j,k} \ \psi^{i}(2^{j}x - k)$$

$$\mathcal{I}^{s}(f)(x) = \sum_{i,k} c_{j,k}^{i} \, 2^{-sj} (\psi^{i})^{(-s)} (2^{j}x - k)$$

Heuristic:

$$f(x) = \sum_{j} \sum_{i,k} c^{i}_{j,k} \ \psi^{i}(2^{j}x - k)$$

$$\mathcal{I}^{s}(f)(x) = \sum_{i,k} c_{j,k}^{i} \, 2^{-sj} (\psi^{i})^{(-s)} (2^{j}x - k)$$

The pseudo-fractional integral of order s, denoted by $\mathcal{J}^s(f)$ consists in replacing the wavelet coefficients c_{λ} by $2^{-sj}c_{\lambda}$.

Heuristic:

$$f(x) = \sum_{j} \sum_{i,k} c^{i}_{j,k} \ \psi^{i}(2^{j}x - k)$$

$$\mathcal{I}^{s}(f)(x) = \sum_{i,k} c^{i}_{j,k} \, 2^{-sj} (\psi^{i})^{(-s)} (2^{j}x - k)$$

The pseudo-fractional integral of order s, denoted by $\mathcal{J}^s(f)$ consists in replacing the wavelet coefficients c_{λ} by $2^{-s_j}c_{\lambda}$.

Theorem: If f is uniform Hölder, then $\mathcal{I}^s(f)$ and $\mathcal{I}^s(f)$ share the same pointwise exponents and spectra

Algorithm:

- Operate pseudo-fractional integration of order s
- Perform the multifractal analysis of this new function

One obtains the integrated Legendre spectrum : $\mathcal{L}_f^s(H) = \mathcal{L}_{\mathcal{I}^s(f)}^s(H)$

Fractionally integrated spectra

Definition: The integrated spectrum of *f* is

$$d_f^s(H) := d_{\mathcal{I}^s f}(H)$$

Fractionally integrated spectra

Definition: The integrated spectrum of *f* is

$$d_f^s(H) := d_{\mathcal{I}^s f}(H)$$

If all points are cusps, then the integrated spectrums of singularities are shifted

$$d_f^s(H) = d_f(H - s)$$

Heuristics:

If all points are cusps, then the integrated Legendre spectrums are shifted

Fractionally integrated spectra

Definition: A uniformly Hölder function *f* is of cusp type

$$\forall \lambda, \ \exists \lambda' \subset \lambda \ j' = j + o(j) \ \text{et} \ |c_{\lambda'}| \ge L_{\lambda} 2^{-o(j)}$$

Fractionally integrated spectra

Definition: A uniformly Hölder function f is of cusp type

$$\forall \lambda, \ \exists \lambda' \subset \lambda \ \ j' = j + o(j) \ \text{et} \ |c_{\lambda'}| \ge L_{\lambda} 2^{-o(j)}$$

Proposition: Si *f* is uniformly of cusp type then the integrated Legendre spectra satisfy

$$\mathcal{L}_f^s(H) := \mathcal{L}_{\mathcal{I}^s f}(h) = \mathcal{L}_f(H - s)$$

Exemples: FBM, Random Wavelet cascades of A. Arneodo, The measure-based random wavelet series of J. Barral and S. Seuret,...

Fractionally integrated spectra

Definition: A uniformly Hölder function f is of cusp type

$$\forall \lambda, \ \exists \lambda' \subset \lambda \ \ j' = j + o(j) \ \text{et} \ |c_{\lambda'}| \ge L_{\lambda} 2^{-o(j)}$$

Proposition: Si *f* is uniformly of cusp type then the integrated Legendre spectra satisfy

$$\mathcal{L}_f^s(H) := \mathcal{L}_{\mathcal{I}^s f}(h) = \mathcal{L}_f(H - s)$$

Exemples: FBM, Random Wavelet cascades of A. Arneodo, The measure-based random wavelet series of J. Barral and S. Seuret,...

Heuristics:

Cusps= Signature of clustering of large wavelet coefficients
Oscillating singularities= Dispersion of large wavelet coefficients

Problem: Oscillating singularities can be present even if the integrated Legendre spectra are shifted

The β -spectrum

The iso-oscillating sets are

$$F_{\beta} = \{x : \beta_f(x) = \beta\}$$

The β -spectrum is

$$\mathcal{D}_f(\beta) = \dim(F_\beta)$$

The β -spectrum

The iso-oscillating sets are

$$F_{\beta} = \{x : \beta_f(x) = \beta\}$$

The β -spectrum is

$$\mathcal{D}_f(\beta) = \dim(F_\beta)$$

Heuristic: Let s "small enough" be given. If f has an oscillating singularity of exponents (H, β) at x_0 , then

$$L_{\lambda_j(x_0)}(f)(x_0) \sim 2^{-Hj}$$
 and $L_{\lambda_j(x_0)}(\mathcal{I}^s f) \sim 2^{-(H+s(1+eta))j}$

The β -spectrum

The iso-oscillating sets are

$$F_{\beta} = \{x : \beta_f(x) = \beta\}$$

The β -spectrum is

$$\mathcal{D}_f(\beta) = \dim(F_\beta)$$

Heuristic : Let s "small enough" be given. If f has an oscillating singularity of exponents (H, β) at x_0 , then

$$L_{\lambda_j(x_0)}(f)(x_0) \sim 2^{-Hj}$$
 and $L_{\lambda_j(x_0)}(\mathcal{I}^s f) \sim 2^{-(H+s(1+\beta))j}$

The β -leaders by

$$B_{\lambda} = 2^{j} \left(\frac{L_{\lambda_{j}(x_{0})}(\mathcal{I}^{s}f(x_{0}))}{L_{\lambda_{j}(x_{0})}(f)(x_{0})} \right)^{1/s} \sim 2^{-\beta j}$$

The
$$\beta$$
-structure function is $B_{\rho,j} = 2^{-dj} \sum_{\lambda \in \Lambda_j} (B_{\lambda})^{\rho}$

The β -scaling function is

$$\omega_f(p) = \liminf_{j \to +\infty} \frac{\log(B_{p,j})}{\log(2^{-j})}$$

The
$$\beta$$
-structure function is $B_{p,j} = 2^{-dj} \sum_{\lambda \in \Lambda_j} (B_{\lambda})^p$

The β -scaling function is

$$\omega_f(p) = \liminf_{s \to 0} \liminf_{j \to +\infty} \frac{\log(B_{p,j})}{\log(2^{-j})}$$

The β -structure function is $B_{p,j} = 2^{-dj} \sum_{\lambda \in \Lambda_j} (B_{\lambda})^p$

The β -scaling function is

$$\omega_f(p) = \underset{s \to 0}{\underset{\text{liminf}}{\text{liminf}}} \quad \underset{j \to +\infty}{\text{liminf}} \quad \frac{\log(B_{p,j})}{\log(2^{-j})}$$

The β -formalism holds if

$$\mathcal{D}_f(\beta) = \inf_{\rho \in \mathbb{R}} (d + \beta \rho - \omega_f(\rho))$$

The
$$\beta$$
-structure function is $B_{p,j} = 2^{-dj} \sum_{\lambda \in \Lambda_j} (B_{\lambda})^p$

The β -scaling function is

$$\omega_f(p) = \underset{s \to 0}{\underset{\text{liminf}}{\text{liminf}}} \quad \underset{j \to +\infty}{\underset{\text{liminf}}{\text{log}(B_{p,j})}} \quad \frac{\log(B_{p,j})}{\log(2^{-j})}$$

The β -formalism holds if

$$\mathcal{D}_f(\beta) = \inf_{p \in \mathbb{R}} (d + \beta p - \omega_f(p))$$

Heuristic: If $\mathcal{D}_f(\beta)$ is supported by a point, then one expects that there are no oscillating singularities

The
$$\beta$$
-structure function is $B_{p,j} = 2^{-dj} \sum_{\lambda \in \Lambda_j} (B_{\lambda})^p$

The β -scaling function is

$$\omega_f(p) = \underset{s \to 0}{\underset{\text{liminf}}{\text{liminf}}} \quad \underset{j \to +\infty}{\underset{\text{liminf}}{\text{log}(B_{p,j})}} \quad \frac{\log(B_{p,j})}{\log(2^{-j})}$$

The β -formalism holds if

$$\mathcal{D}_f(\beta) = \inf_{p \in \mathbb{R}} (d + \beta p - \omega_f(p))$$

Heuristic: If $\mathcal{D}_f(\beta)$ is supported by a point, then one expects that there are no oscillating singularities

Theorem:

- ▶ If f is of cusp-type, then $\mathcal{D}_f(\beta)$ is supported by a point
- ▶ The β -formalism holds for lacunary wavelet series

Spectrum of oscillating singularities

$$\mathbb{D}_f(H,\beta) = \dim(\{x_0: h_f(x_0) = H \text{ et } \beta_f(x_0) = \beta\})$$

Spectrum of oscillating singularities

$$\mathbb{D}_f(H,\beta) = \dim(\{x_0: h_f(x_0) = H \text{ et } \beta_f(x_0) = \beta\})$$

If f has an oscillating singularity of exponants (H, β) at x_0 , then

$$L_{\lambda_j(x_0)} \sim 2^{-Hj}$$
 and $B_{\lambda_j(x_0)} \sim 2^{-\beta j}$.

Spectrum of oscillating singularities

$$\mathbb{D}_f(H,\beta) = \dim(\{x_0: h_f(x_0) = H \text{ et } \beta_f(x_0) = \beta\})$$

If f has an oscillating singularity of exponants (H, β) at x_0 , then

$$L_{\lambda_j(x_0)} \sim 2^{-Hj}$$
 and $B_{\lambda_j(x_0)} \sim 2^{-\beta j}$.

The grandcanonical structure function is

$$G_{p,q,j} = 2^{-dj} \sum_{\lambda \in \Lambda_j} (L_{\lambda})^p (B_{\lambda})^q$$

The grandcanonical scaling function is

$$\forall p, q \in \mathbb{R}, \ \Omega_f(p, q) = \underset{s \to 0}{\underset{\text{liminf}}{\text{liminf}}} \ \underset{j \to +\infty}{\underset{\text{liminf}}{\text{liminf}}} \ \frac{\log(G_{p,j})}{\log(2^{-j})}$$

Spectrum of oscillating singularities

$$\mathbb{D}_f(H,\beta) = \dim(\{x_0: h_f(x_0) = H \text{ et } \beta_f(x_0) = \beta\})$$

If f has an oscillating singularity of exponants (H, β) at x_0 , then

$$L_{\lambda_i(x_0)} \sim 2^{-Hj}$$
 and $B_{\lambda_i(x_0)} \sim 2^{-\beta j}$.

The grandcanonical structure function is

$$G_{p,q,j} = 2^{-dj} \sum_{\lambda \in \Lambda_j} (L_{\lambda})^p (B_{\lambda})^q$$

The grandcanonical scaling function is

$$\forall p, q \in \mathbb{R}, \ \Omega_f(p, q) = \underset{s \to 0}{\operatorname{liminf}} \ \underset{j \to +\infty}{\operatorname{liminf}} \ \frac{\log(G_{p,j})}{\log(2^{-j})}$$

The grandcanonical multifractal formalism holds if

$$\mathbb{D}_{f}(H,\beta) = \inf_{p,q \in \mathbb{R} \times \mathbb{R}} (d + Hp + \beta q - \Omega_{f}(p,q))$$

Theorem:

The grandcanonical multifractal formalism holds for cusp-type functions and for lacunary wavelet series

Theorem:

The grandcanonical multifractal formalism holds for cusp-type functions and for lacunary wavelet series

Challenges:

Turbulence

Oscillating singularities on sets of small dimension

Theorem:

The grandcanonical multifractal formalism holds for cusp-type functions and for lacunary wavelet series

Challenges:

Turbulence

Oscillating singularities on sets of small dimension

Alternative stochastic processes which display oscillating singularities

Heuristic: oscillating singularities are present when wavelet coefficients are both sparse and dispersed without interscale correlations