Local behavior of traces of Besov functions: prevalent results

Delphine Maman

Université Paris-Est Créteil Val-de-Marne

in collaboration with S. Seuret and J-M Aubry

April 26, 2010

4 D b 4 A b

→ Ξ →

Introduction Known results coefficient of trace Traces results Key of the proof In progress ●0000 Pointwise Hölder exponent

Definition

Given a real function $f \in L^{\infty}_{\text{loc}}(\mathbb{R}^D)$ and $x_0 \in \mathbb{R}^D$, f is said to belong to $\mathcal{C}^{\alpha}(x_0)$, for some $\alpha \geq 0$, if there exists a polynomial P of degree at most $\lfloor \alpha \rfloor$ and a constant C > 0 such that locally around x_0 :

 $|f(x) - P(x - x_0)| \le C|x - x_0|^{\alpha}.$

4 A I

- - E > - E >

-

Introduction Known results coefficient of trace Traces results Key of the proof In progress ●0000 Pointwise Hölder exponent

Definition

Given a real function $f \in L^{\infty}_{\text{loc}}(\mathbb{R}^D)$ and $x_0 \in \mathbb{R}^D$, f is said to belong to $\mathcal{C}^{\alpha}(x_0)$, for some $\alpha \geq 0$, if there exists a polynomial P of degree at most $\lfloor \alpha \rfloor$ and a constant C > 0 such that locally around x_0 :

$$|f(x) - P(x - x_0)| \le C|x - x_0|^{\alpha}.$$

Pointwise Hölder exponent :

$$h_f(x_0) = \sup\{\alpha \ge 0: f \in \mathcal{C}^{\alpha}(x_0)\}.$$

A (1) < A (2) </p>

Introduction Known results coefficient of trace Traces results Key of the proof In progress ●0000 Pointwise Hölder exponent

Definition

Given a real function $f \in L^{\infty}_{\text{loc}}(\mathbb{R}^D)$ and $x_0 \in \mathbb{R}^D$, f is said to belong to $\mathcal{C}^{\alpha}(x_0)$, for some $\alpha \geq 0$, if there exists a polynomial P of degree at most $\lfloor \alpha \rfloor$ and a constant C > 0 such that locally around x_0 :

$$|f(x) - P(x - x_0)| \le C|x - x_0|^{\alpha}.$$

Pointwise Hölder exponent :

$$h_f(x_0) = \sup\{\alpha \ge 0: f \in \mathcal{C}^{\alpha}(x_0)\}.$$

Spectrum of singularities :

 $d_f: h \in [0,\infty] \longmapsto \dim_{\mathcal{H}} E_f(h), \quad \text{where } E_f(h) := \{x_0 \in \mathbb{R}^D : h_f(x_0) = h\}.$

Here $\dim_{\mathcal{H}}$ stands for the Hausdorff dimension.

- 12

Traces of functions

0 < d < D are two fixed integers. Let d' := D - d and $X = (x, x') \in \mathbb{R}^d \times \mathbb{R}^{d'} = \mathbb{R}^D$. For $a \in \mathbb{R}^{d'}$ we shall denote by $\mathcal{H}_a := \{(x, a)\}$ the *d*-dimensional affine subspace of \mathbb{R}^D . Let *f* be a continuous function on \mathbb{R}^D . Its trace on \mathcal{H}_a is

$$f_a := f_{|\mathcal{H}_a} : \mathbb{R}^d \longrightarrow \mathbb{R}$$
$$x \longmapsto f(x, a)$$

Goal : to obtain an upper and a lower bound of the spectrum

Introduction	Known results	coefficient of trace	Traces results	Key of the proof	In progress
00000					
Prevalence					

The space E is endowed with its Borel σ -algebra $\mathcal{B}(E)$ and all Borel measures μ on $(E, \mathcal{B}(E))$ will be automatically *completed* A set is said to be *universally measurable* if it is measurable for any (completed) Borel measure.

4 A I

→ 3 → 4 3

Introduction	Known results	coefficient of trace	Traces results	Key of the proof	In progress
00000					
Prevalence					

The space E is endowed with its Borel σ -algebra $\mathcal{B}(E)$ and all Borel measures μ on $(E, \mathcal{B}(E))$ will be automatically *completed* A set is said to be *universally measurable* if it is measurable for any (completed) Borel measure.

Definition

A universally measurable set $A \subset E$ is called *shy* if there exists a Borel measure μ that is positive on some compact subset K of E and such that

for every
$$x \in E$$
, $\mu(A+x) = 0$.

More generally, a set that is included in a shy universally measurable set is also called shy.

Finally, the complement in E of a shy subset is called *prevalent*.

The measure μ used to show that some subset is shy or prevalent is called a *probe*.

Introduction	Known results	coefficient of trace	Traces results	Key of the proof	In progress
00000					
Prevalence					

Properties

- when a set B is prevalent, it is dense in E
- B + x is also prevalent for any $x \in E$
- if $(B_n)_{n\in\mathbb{N}}$ is a sequence of prevalent sets then so is $\bigcap_{n\in\mathbb{N}} B_n$
- when E has finite dimension, B is prevalent in E if and only if it has full Lebesgue measure.

・ 「 ト ・ ヨ ト ・ ヨ ト

Introduction Known results coefficient of trace Traces results Key of the proof In progress 0000 How to prove that a universally measurable set A is shy?

We set the probe space P to be the d_1 -dimensional subspace of E spanned by the functions g^i .

(日) (四) (王) (王)

-

Introduction Known results coefficient of trace Traces results Key of the proof In progress 0000 How to prove that a universally measurable set A is shy?

We set the probe space P to be the d_1 -dimensional subspace of E spanned by the functions g^i .

Take an arbitrary $f \in E$ and for each $\beta \in \mathbb{R}^{d_1}$ define

$$f^\beta := f + \sum_{i=1}^{d_1} \beta_i g^i.$$

Proposition

If for any $f \in E$, the set $\{\beta \in \mathbb{R}^{d_1} : f^\beta \in A\}$ has d_1 -dimensional Lebesgue measure \mathcal{L}_{d_1} equal to 0 then A is shy

Introduction Known results coefficient of trace Traces results Key of the proof In progress 0000 How to prove that a universally measurable set A is shy?

We set the probe space P to be the d_1 -dimensional subspace of E spanned by the functions g^i .

Take an arbitrary $f \in E$ and for each $\beta \in \mathbb{R}^{d_1}$ define

$$f^{\beta} := f + \sum_{i=1}^{d_1} \beta_i g^i.$$

Proposition

If for any $f \in E$, the set $\{\beta \in \mathbb{R}^{d_1} : f^\beta \in A\}$ has d_1 -dimensional Lebesgue measure \mathcal{L}_{d_1} equal to 0 then A is shy

Indeed, if the proposition is true, let us denote by μ the measure \mathcal{L}_{d_1} carried by \mathcal{P} and fix any $f \in E$. For μ -almost $F \in \mathcal{P}$, we know that $f + F \notin A$. Hence the set $\{f + A\} \cap \mathcal{P}$ has a μ -measure equal to 0, i.e.

$$\mu(\{f + A\}) = 0.$$

Since this is true for any $f \in E$, by definition, the set A is shy.

(*) *) *) *)

For every $\lambda^D := (j, \mathbf{k}, \mathbf{l}) \in \mathbb{Z} \times \mathbb{Z}^D \times \{0, 1\}^D$, we define the tensorized wavelet

$$\Psi_{\lambda}(x) \coloneqq \prod_{i=1}^{D} \Psi_{j,k_{i}}^{l_{i}}(x_{i}),$$

with $\mathbf{k} = (k_1, k_2, \cdots, k_D) \in \mathbb{Z}^D$ and $\mathbf{l} = (l_1, l_2, \cdots, l_D) \in \{0, 1\}^D$.

・ 同 ト ・ ヨ ト ・ ヨ ト

⇒ nar

For every $\lambda^D := (j, \mathbf{k}, \mathbf{l}) \in \mathbb{Z} \times \mathbb{Z}^D \times \{0, 1\}^D$, we define the tensorized wavelet

$$\Psi_{\lambda}(x) := \prod_{i=1}^{D} \Psi_{j,k_i}^{l_i}(x_i),$$

with $\mathbf{k} = (k_1, k_2, \cdots, k_D) \in \mathbb{Z}^D$ and $\mathbf{l} = (l_1, l_2, \cdots, l_D) \in \{0, 1\}^D$.

Any function $f \in L^2(\mathbb{R}^D)$ can be written

$$f(X) = \sum_{\lambda^D = (j, \mathbf{k}, \mathbf{l}): \ j \in \mathbb{Z}, \ \mathbf{k} \in \mathbb{Z}^D, \ \mathbf{l} \in L^D} c_{\lambda^D} \Psi_{\lambda^D}(X),$$

where $L^D:=\{0,1\}^D\backslash\,\{0,..,0\}$

(신문) (문)

-

Theorem (S.Jaffard)

Assume that the wavelet Ψ is regular enough. Let $f:[0,1]^d \to \mathbb{R}$ be a locally bounded function with wavelet coefficients $\{c_\lambda\}$, and let $x \in [0,1]^d$. If $f \in C^{\gamma}(x)$, then there exists a constant $M < \infty$ such that for all $\lambda = (j, \mathbf{k}, \mathbf{l}) \in \Lambda^d \times L^d$,

$$|c_{\lambda}| \le M \left(2^{-j} + \left| x - k 2^{-j} \right| \right)^{\gamma} = M 2^{-j\gamma} (1 + \left| 2^{j} x - k \right|)^{\gamma}$$
(1)

Reciprocally, if (1) holds true and if $f \in \bigcup_{\varepsilon > 0} C^{\varepsilon}([0,1]^d)$, then $f \in C^{\gamma-\eta}(x)$, for every $\eta > 0$.

where

for
$$j \ge 1$$
, $\mathbb{Z}_j = \{0, 1, \cdots, 2^j - 1\}$ and $\Lambda_j^d = \{j\} \times \mathbb{Z}_j^d$
 $\Lambda^d = \bigcup_{j \ge 1} \Lambda_j^d.$

Definition

Let $0 < s < \infty$, $0 < p, q \le \infty$. Assume that the wavelet Ψ is regular enough. The $B_{p,q}^s([0,1]^D)$ Besov norm (quasi-norm when p < 1 or q < 1) of a function f on $[0,1]^D$ having wavelet coefficients $c_{\lambda D}$ is defined as

$$\|f\|_{B^{s}_{p,q}} = \left(\sum_{j\geq 1} \left(2^{(sp-D)j} \sum_{(\mathbf{k},\mathbf{k}')\in\mathbb{Z}_{j}^{D}} |c_{\lambda^{D}}|^{p}\right)^{\frac{q}{p}}\right)^{\frac{1}{q}}$$
(2)

with the obvious modifications when $p = \infty$ or $q = \infty$.

Introduction	Known results	coefficient of trace	Traces results	Key of the proof	In progress
00000					

Theorem (S.Jaffard)

Let $0 and <math>D/p < s < \infty$. For any $g \in B^s_{p,\infty}(\mathbb{R}^D)$, for all $h \ge s - D/p$, $d_a(h) < \min(D, D + (h - s)p),$

and $E_f(h) = \emptyset$ if h < s - D/p.

∃ 990

A B M A B M

Theorem (S.Jaffard)

Let $0 and <math>D/p < s < \infty$. For any $g \in B^s_{p,\infty}(\mathbb{R}^D)$, for all $h \ge s - D/p$, $d_g(h) \le \min(D, D + (h - s)p)$, and $E_f(h) = \emptyset$ if h < s - D/p.

Theorem (A.Fraysse, S.Jaffard)

Let $0 , <math>0 < q \le \infty$ and $0 < s - D/p < \infty$. For almost all $g \in B^s_{p,q}(\mathbb{R}^D)$,

$$d_g(h) = \begin{cases} D + (h - s)p & \text{if } h \in [s - D/p, s] \\ -\infty & else \end{cases}$$

and for x in a set of full Lebesgue measure in \mathbb{R}^D , $h_g(x) = s$.

くぼう くちゃ くちゃ

- 12

We will be first focusing on the local behavior of traces on $(0,1)^d \times \{a\}$, $a \in (0,1)^{d'}$.

We will be first focusing on the local behavior of traces on $(0,1)^d \times \{a\}$, $a \in (0,1)^{d'}$. Hence we will consider functions f of the form

$$f(X) = \sum_{\lambda^D \in \Lambda^D \times L^D} c_{\lambda^D} \Psi_{\lambda^D}(X),$$

where

$$X = (x, x')$$

for $j \ge 1$, $\mathbb{Z}_j = \{0, 1, \cdots, 2^j - 1\}$ and $\Lambda_j^D = \{j\} \times \mathbb{Z}_j^D$
 $\Lambda^D = \bigcup_{j \ge 1} \Lambda_j^D.$

(日) (四) (王) (王)

$$f_a(x) = \sum_{\lambda^D \in \Lambda^D \times L^D} c_{\lambda^D} \prod_{i=1}^d \Psi_{j,k_i}^{l_i}(x_i) \prod_{i=1}^{d'} \Psi_{j,k'_i}^{l'_i}(a_i)$$

◆□> ◆□> ◆三> ◆三> 三 のへで

$$f_a(x) = \sum_{\lambda^D \in \Lambda^D \times L^D} c_{\lambda^D} \prod_{i=1}^d \Psi_{j,k_i}^{l_i}(x_i) \prod_{i=1}^{d'} \Psi_{j,k_i'}^{l_i'}(a_i)$$

$$f_a(x) = \sum_{\lambda^D \in \Lambda^D \times L^D} c_{\lambda^D} \prod_{i=1}^{d'} \Psi_{j,k'_i}^{l'_i}(a_i) \prod_{i=1}^d \Psi_{j,k_i}^{l_i}(x_i)$$

◆□> ◆□> ◆三> ◆三> 三 のへで

$$f_a(x) = \sum_{\lambda^D \in \Lambda^D \times L^D} c_{\lambda^D} \prod_{i=1}^d \Psi_{j,k_i}^{l_i}(x_i) \prod_{i=1}^{d'} \Psi_{j,k'_i}^{l'_i}(a_i)$$

$$f_{a}(x) = \sum_{\lambda^{D} \in \Lambda^{D} \times L^{D}} c_{\lambda^{D}} \prod_{i=1}^{d'} \Psi_{j,k'_{i}}^{l'_{i}}(a_{i}) \prod_{i=1}^{d} \Psi_{j,k_{i}}^{l_{i}}(x_{i})$$

Problem : $(0,1)^D \setminus 0^D \neq (0,1)^d \setminus 0^d \times (0,1)^{d'} \setminus 0^{d'}$

∃ 990

$$f_a(x) = G_a(x) + F_a(x)$$

where

$$G_{a}(x) := \sum_{\lambda \in \Lambda^{d} \times 0^{d}} d_{\lambda}(a) \Psi_{\lambda}(x)$$
$$F_{a}(x) := \sum_{\lambda \in \Lambda^{d} \times L^{d}} d_{\lambda}(a) \Psi_{\lambda}(x)$$

・ロト ・四ト ・ヨト ・ヨト

5 9 Q C

$$f_a(x) = G_a(x) + F_a(x)$$

where

$$G_{a}(x) := \sum_{\lambda \in \Lambda^{d} \times 0^{d}} d_{\lambda}(a) \Psi_{\lambda}(x)$$
$$F_{a}(x) := \sum_{\lambda \in \Lambda^{d} \times L^{d}} d_{\lambda}(a) \Psi_{\lambda}(x)$$

The trace f_a can be written

$$f_a = \sum_{\lambda \in \Lambda^d \times \{0,1\}^d} d_\lambda(a) \Psi_\lambda(x)$$

for $\lambda=(j,\mathbf{k},\mathbf{l})\in\Lambda^d\times\{0,1\}^d$

э

Theorem (S.Jaffard)

Let $0 < p, s < \infty$. If $f \in B^s_{p,\infty}(\mathbb{R}^D)$, then for Lebesgue-almost all $a \in \mathbb{R}^{d'}$ $f_a \in \bigcap_{s' < s} B^{s'}_{p,\infty}(\mathbb{R}^d)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theorem (S.Jaffard)

Let $0 < p, s < \infty$. If $f \in B^s_{p,\infty}(\mathbb{R}^D)$, then for Lebesgue-almost all $a \in \mathbb{R}^{d'}$ $f_a \in \bigcap_{s' < s} B^{s'}_{p,\infty}(\mathbb{R}^d)$.

Theorem (S.Jaffard)

Let $0 and <math>D/p < s < \infty$. For any $g \in B^s_{p,\infty}(\mathbb{R}^D)$, for all $h \ge s - D/p$,

$$d_g(h) \le \min(D, D + (h - s)p),$$

and $E_f(h) = \emptyset$ if h < s - D/p.

A B M A B M

Theorem (S.Jaffard)

Let $0 < p, s < \infty$. If $f \in B^s_{p,\infty}(\mathbb{R}^D)$, then for Lebesgue-almost all $a \in \mathbb{R}^{d'}$ $f_a \in \bigcap_{s' < s} B^{s'}_{p,\infty}(\mathbb{R}^d)$.

Theorem (S.Jaffard)

Let $0 and <math>D/p < s < \infty$. For any $g \in B^s_{p,\infty}(\mathbb{R}^D)$, for all $h \ge s - D/p$,

$$d_g(h) \le \min(D, D + (h - s)p),$$

and $E_f(h) = \emptyset$ if h < s - D/p.

Proposition

Let $0 and <math>D/p < s < \infty$. For any $g \in B^s_{p,\infty}(\mathbb{R}^D)$, for Lebesgue-almost all $a \in \mathbb{R}^{d'}$, for all $h \ge s - d/p$,

$$d_{g_a}(h) \le \min(d, d + (h - s)p),$$

and $E_f(h) = \emptyset$ if h < s - d/p.

Theorem (J-M Aubry, D. Maman, S. Seuret)

Let $0 , <math>0 < q \le \infty$ and $0 < s - d/p < +\infty$. For almost all f in $B^s_{p,q}(\mathbb{R}^D)$, for Lebesgue-almost all $a \in \mathbb{R}^{d'}$, the following holds:

() the spectrum of singularities of f_a is

$$d_{f_a}(h) = \begin{cases} d + (h - s)p & \text{ if } h \in [s - d/p, s] \\ -\infty & \text{ else.} \end{cases}$$

2 for every open set $\Omega \subset \mathbb{R}^d$, the level set $E_{f_a}(s) \cap \Omega$ has full Lebesgue measure in Ω .

Figure: Singularity spectrum of almost all $f \in B^s_{p,q}(\mathbb{R}^D)$ and its trace f_a for Lebesgue almost every $a \in \mathbb{R}^{d'}$.

Definition

Let B(x,r) denote the closed l^{∞} ball of radius r around x in $[0,1]^d$. For $\alpha \geq 1$ and $j \in \mathbb{N}$, let

an

・ロッ ・回 ・ ・ ヨッ ・

Definition

Let B(x, r) denote the closed l^{∞} ball of radius r around x in $[0, 1]^d$. For $\alpha \ge 1$ and $j \in \mathbb{N}$, let

and

$$\mathcal{X}_{j}^{lpha} := \bigcup_{k \in \mathbb{Z}_{j}^{d}} B(k2^{-j}, 2^{-j\alpha})$$
 $\mathcal{X}^{lpha} := \limsup_{j \to \infty} \mathcal{X}_{j}^{lpha}$

Theorem

There exists a positive σ -finite measure m_{α} carried by \mathcal{X}^{α} and such that any set E having Hausdorff dimension $\dim_{\mathcal{H}}(E) < \frac{d}{\alpha}$ has measure $m_{\alpha}(E) = 0$. In particular, $m_{\alpha}(\mathcal{X}^{\alpha}) > 0$ and $\dim_{\mathcal{H}} \mathcal{X}^{\alpha} = d/\alpha$.

→ Ξ →

Introduction	Known results	coefficient of trace	Traces results	Key of the proof	In progress

Definition

Suppose that $0 < s - D/p < \infty$ and $0 < q \le \infty$. Let $\alpha \ge 1$ and let us define the exponent

$$H(\alpha) := s - \frac{d}{p} + \frac{d}{\alpha p}.$$

and the set

 $\mathcal{F}_{\alpha} := \left\{ f \in B^{s}_{p,q}([0,1]^{D}) : \exists \mathcal{A}(f) \text{ of full Lebesgue measure such that} \\ a \in \mathcal{A}(f) \Longrightarrow \forall x \in \mathcal{X}^{\alpha}, \ h_{f_{a}}(x) \leq H(\alpha) \right\}$

伺き くまき くまき

-

Introduction	Known results	coefficient of trace	Traces results	Key of the proof	In progress

Definition

Suppose that $0 < s - D/p < \infty$ and $0 < q \le \infty$. Let $\alpha \ge 1$ and let us define the exponent

$$H(\alpha) := s - \frac{d}{p} + \frac{d}{\alpha p}$$

and the set

 $\mathcal{F}_{\alpha} := \left\{ f \in B^{s}_{p,q}([0,1]^{D}) : \exists \mathcal{A}(f) \text{ of full Lebesgue measure such that} \right.$

$$a \in \mathcal{A}(f) \Longrightarrow \forall x \in \mathcal{X}^{\alpha}, \ h_{f_a}(x) \le H(\alpha)$$

・ 同 ト ・ ヨ ト ・ モ ト …

- 12

Theorem

Suppose that $0 < s - D/p < \infty$ and $0 < q \le \infty$. The set \mathcal{F}_{α} is prevalent in $B^s_{p,q}([0,1]^D)$.

universally measurable: very delicate prevalent: technique of the probe space

From now on, let $(\alpha_n)_{n \in \mathbb{N}}$ be a dense sequence in $[1, \infty)$ such that $\alpha_0 = 1$.

Corollary

 $The \ set$

$$\begin{aligned} \mathcal{F} &:= \left\{ f \in B^s_{p,q}([0,1]^D) : \exists \mathcal{A}(f) \text{ of full Lebesgue measure such that} \\ a \in \mathcal{A}(f) \Rightarrow \forall n \in \mathbb{N}, \, \forall x \in \mathcal{X}^{\alpha_n}, \, h_{f_a}(x) \leq H(\alpha_n) \right\} \\ \text{is prevalent in } B^s_{p,a}([0,1]^D). \end{aligned}$$

イロト イボト イヨト イヨ

From now on, let $(\alpha_n)_{n \in \mathbb{N}}$ be a dense sequence in $[1, \infty)$ such that $\alpha_0 = 1$.

Corollary

The set

$$\mathcal{F} := \left\{ f \in B_{p,q}^{s}([0,1]^{D}) : \exists \mathcal{A}(f) \text{ of full Lebesgue measure such that} \\ a \in \mathcal{A}(f) \Rightarrow \forall n \in \mathbb{N}, \forall x \in \mathcal{X}^{\alpha_{n}}, h_{f_{a}}(x) \leq H(\alpha_{n}) \right\}$$

is prevalent in $B_{p,q}^s([0,1]^D)$.

We apply this corollary with $\alpha_n = \alpha_0 = 1$: if f belongs to the prevalent set \mathcal{F} , then for any $a \in \mathcal{A}(f)$, for any $x \in \mathcal{X}^{\alpha_0} = \mathcal{X}^1 = [0, 1]^d$, $h_{f_a}(x) \leq H(\alpha_0) = s$. Thus :

Proposition

For almost all $f \in B^s_{p,q}([0,1]^D)$, for Lebesgue-almost all $a \in [0,1]^{d'}$, for all $x \in [0,1]^d$, $h_{f_a}(x) \leq s$.

4 E 5 4 E

Recall :

Corollary

$$\begin{split} \mathcal{F} &:= \left\{ f \in B^s_{p,q}([0,1]^D) : \exists \, \mathcal{A}(f) \, \text{ of full Lebesgue measure such that} \\ & a \in \mathcal{A}(f) \Rightarrow \forall n \in \mathbb{N}, \, \forall x \in \mathcal{X}^{\alpha_n}, \, h_{f_a}(x) \leq H(\alpha_n) \right\} \end{split}$$

is prevalent in $B_{p,q}^s([0,1]^D)$.

Consider a function f in the prevalent set \mathcal{F} . Let $h \in (s - d/p, s]$. This exponent can be written

$$h = H(\alpha) = s - \frac{d}{p} + \frac{d}{\alpha p}$$

Let us assume that $\alpha > 1$, i.e. $H(\alpha) \in (s - d/p, s)$. Consider a subsequence $(\alpha_{\phi(n)})_{n \in \mathbb{N}}$ of $(\alpha_n)_{n \in \mathbb{N}}$ which is nondecreasing and converges to α Remark that $\mathcal{X}^{\alpha} \subset \bigcap_{n \geq 1} \mathcal{X}^{\alpha_{\phi(n)}} \subset \{x : h_{f_{\alpha}}(x) \leq H(\alpha)\}.$

- A B M A B M

Let us introduce the set $\mathcal{Y}^{\alpha} := \{x : h_{f_a}(x) < H(\alpha)\}$. Clearly,

$$\mathcal{Y}^{\alpha} = \bigcup_{n \ge 1} \left\{ x : h_{f_a}(x) \le H(\alpha) - 1/n \right\}.$$

(日) (四) (王) (王)

э.

Let us introduce the set $\mathcal{Y}^{\alpha} := \{x : h_{f_a}(x) < H(\alpha)\}$. Clearly,

$$\mathcal{Y}^{\alpha} = \bigcup_{n \ge 1} \left\{ x : h_{f_a}(x) \le H(\alpha) - 1/n \right\}.$$

Thanks to result about the upper bound of the spectrum, each set $\{x : h_{f_{\alpha}}(x) \leq H(\alpha) - 1/n\}$ has Hausdorff dimension strictly less than d/α . For the m_{α} measure defined before, we have : $m_{\alpha}(\mathcal{X}^{\alpha}) > 0$ and $m_{\alpha}(\mathcal{Y}^{\alpha}) = 0$. So we have $m_{\alpha}(\mathcal{X}^{\alpha} \setminus \mathcal{Y}^{\alpha}) > 0$.

- A IS N - A IS N

-

Let us introduce the set $\mathcal{Y}^{\alpha} := \{x : h_{f_a}(x) < H(\alpha)\}$. Clearly,

$$\mathcal{Y}^{\alpha} = \bigcup_{n \ge 1} \left\{ x : h_{f_a}(x) \le H(\alpha) - 1/n \right\}.$$

Thanks to result about the upper bound of the spectrum, each set $\{x : h_{f_a}(x) \leq H(\alpha) - 1/n\}$ has Hausdorff dimension strictly less than d/α . For the m_α measure defined before, we have : $m_\alpha(\mathcal{X}^\alpha) > 0$ and $m_\alpha(\mathcal{Y}^\alpha) = 0$. So we have $m_\alpha(\mathcal{X}^\alpha \setminus \mathcal{Y}^\alpha) > 0$. This means equivalently that $m_\alpha(\{x \in \mathcal{X}^\alpha : h_{f_a}(x) = H(\alpha)\}) > 0$. This implies that the set $\{x \in \mathcal{X}^\alpha : h_{f_a}(x) = H(\alpha)\}$ has Hausdorff dimension greater than d/α , and thus

$$d_{f_a}(h) = d_{f_a}(H(\alpha)) = \dim_{\mathcal{H}} \{ x : h_{f_a}(x) = H(\alpha) \} \ge d/\alpha = p(h-s) + d,$$

the last equality following from the definition of $H(\alpha)$.

- 周下 - 王下 - 王下

Definition

Let d > 0. A function $\eta : \mathbb{R}^+ \to \mathbb{R}$ is said to be d-admissible if

$$s(q) = q\eta(1/q)$$

is concave and satisfy $0 \le s'(q) \le d$. It is strongly d-admissible if furthermore s(0) > 0.

The following spaces are associated to η : Let d < D, we consider

$$V^{D} = \bigcap_{\epsilon > 0, 0
$$V = \bigcap_{\epsilon > 0, 0$$$$

4 A I

→ 3 → 4 3

-

Theorem

Let 0 < d < D two fixed integers, and let η strongly d-admissible For almost all f in V^D , for Lebesgue-almost all $a \in [0,1]^{d'}$, the following holds:

 $\bullet \ f_a \in V$

2 The spectrum of singularities of f_a is:

$$\begin{split} & \text{for every } H \in \left[s(0), \frac{d}{p_c}\right], \qquad \qquad d_{f_a}(h) = \inf_{p \ge p_c} (pH - \eta(p) + d) \\ & \text{for every } H \notin \left[s(0), \frac{d}{p_c}\right], \qquad \qquad E_{f_a}(h) = \emptyset. \end{split}$$

where p_c is the only critical point such that $\eta(p_c) = d$ $\forall p > 0 \ \eta_{f_a}(p) = \eta(p)$

where :

$$V^{D} = \bigcap_{\epsilon > 0, 0
$$V = \bigcap_{\epsilon > 0, 0$$$$

Definition (Baire's genericity)

Given a Baire's space E

It is said that a property is hold generically or quasi-all function of E satisfy this property if the set of functions that satisfy contains a countable intersection of everywhere dense open.