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Motivation

Fully developed Turbulence

Intermittency Phenomenom ⇒ Multifractal Analysis :
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Estimation :
c1 ' 0.345
c2 ' 0.0.27

Intermittency characterized by c2

Is there any oscillating singularities?
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Goal : detect oscillating singularities in random field
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Regularity exponent

f (x), x ∈ [0, n) Signal

local singularity exponent : the Hölder exponent

|f (x)− Pn (x − x0) | ≤ C |x − x0|h(x0) h(x0) ∈ R+

PN(x − x0) polynomial of order N, N < h(x0) < N + 1.

Example : Cusp singularities, f (x) = |x − x0|h, h ∈ R

Tf (a, x) ∼ ah(x), Multiresolution Coefficients of f
depending on a space parameter x

and a scale parameter a.
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Multifractal Formalism

Scale Invariance :

Mq(a) = 〈|Tf (a, x)|q〉 = Fqa
ζ(q), a ∈ [η, L], L/η � 1

Singularity spectrum

D(h) = dH{x | h(x) = h}

dH Haussdorf (or fractal) dimension.

(Parisi and Frisch 1985)
⇒ probability to find h at scale a is Pa(h) = a1−D(h)

Multifractal Formalism

ζ(q) and D(h) are linked by a Legendre Transform

ζ(q) = minh(qh − D(h)) and D(h) = minq(qh − ζ(q))
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Multifractal Formalism

Mq(a) = 〈|T (a, x)|q〉 ∼ aζ(q)

q linear regressions for ζ(q)
+ Legendre transform for D(h)

hq(a) = 〈T̂ (a, x) log |T (a, x)|〉 ∼ ah(q)

Dq(a) = 〈T̂ (a, x) log T̂ (a, x)〉 ∼ aD(q)

with T̂ (a, x) = |T (a, x)|q/
∑

x |T (a, x)|q
2q linear regressions

(Muzy et al 1994)

C1(a) = 〈log |T (a, x)|〉 ∼ c1 log(a)
C2(a) = 〈(log |T (a, x)|)2〉 − 〈log |T (a, x)|〉2 ∼ −c2 log(a)

ζ(q) = c1q − c2
2 q2 + c3

6 q3 + ...

(Castaing et al 1993, Delour et al 2001)
Only two linear regressions : c2 = 0 ⇔ monofractal
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Multiresolution coefficients used

Wavelet coefficients of a Dyadic (cf (j , k))
or a continuous Wavelet Transform

WTMM defined from continuous WT (Arneodo et al 1995)

Wavelet Leaders defined from Dyadic WT : Lf (j , k)

perform those based on wavelet coefficients [6]. Wavelet coef-
ficients and Leaders are fully defined in Section 2.1. A brief
review of multifractal analysis and formalisms is given in Sec-
tion 2.2.
Second, an alternative to multifractal estimation procedures
based on Eq. (1), has been proposed originally in the early
nineties in [7] and further developed in [8]: From estimations
of the cumulants of the logarithm of the multiresolution quan-
tities, the coefficients cp of the polynomial expansion of ζ(q)
can be estimated directly. As explained above, these so-called
log-cumulants are of particular interest, since they naturally
emphasize the difference between mono - and multifractal pro-
cesses. Log cumulant expansions are introduced in Section 2.3.
Third, we use non parametric bootstrap techniques for the de-
sign of the statistical tests. Bootstrap was introduced in the
eighties [9] and has recently regained interest due to contin-
uously growing computer facilities [10–12]. It consists of ap-
proximating an unknown distribution of a random variable by
means of repeated resampling with replacement from the avail-
able data. The use of bootstrap techniques in the wavelet do-
main was first reported in [13]. Bootstrap has also been con-
sidered for the estimation of the Hurst parameter of self-similar
processes [14], and for the estimation of scaling exponents and
log-cumulants for both mono - and multifractal processes [6,15].
In the present work, we use nonparametric bootstrap methods
on wavelet Leaders and coefficients as robust means for obtain-
ing approximate null distributions of test statistics for hypoth-
esis tests on cp. Six declinations for the precise construction
of the empirical acceptance region are analyzed and compared.
Basics on hypothesis tests and non parametric bootstrap tests,
together with the definitions of the acceptance regions are de-
tailed in Section 3.2.
In order to assess the statistical performance (significances, p-
values and powers) of the proposed bootstrap tests, large sets of
Monte Carlo (MC) simulations are performed. The correspond-
ing methodology, the simulation set up, as well as the multi-
fractal processes used to conduct the numerical simulations,
are presented in Section 4. The results show that the boot-
strap tests exhibit satisfactory performance and are reported
and discussed in Section 5. We end up with a robust and pow-
erful practical test procedure for the analysis of a single and
finite length observation of empirical data. This is detailed in
Section 6, together with conclusions and perspectives.

2 Wavelets and Multifractal Analysis

2.1 Wavelet Coefficients and Wavelet Leaders

Wavelet Coefficients. Let ψ0(t) denote a reference pattern
whose energy remains mostly concentrated in a narrow sup-
port both in the time and frequency domains. This func-
tion ψ0(t) is commonly referred to as the mother-wavelet and
can be further characterized by its number of vanishing mo-
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dX(j,k)LX(j,k) = supλ‘⊂3λ |dX,λ‘ |

λ‘⊂ 3λ

Figure 1: The wavelet Leaders LX (black circle) are calculated
from the discrete wavelet coefficients dX(·, ·) (dots) by taking
the supremum in the time neighborhood 3λj,k, over all finer
scales 2j′

< 2j (area in grey).

ments, a strictly positive integer Nψ ≥ 1 defined as: ∀k =
0, 1, . . . , Nψ − 1,

∫
R tkψ0(t)dt ≡ 0 and

∫
R tNψψ0(t)dt %= 0. Let

{ψj,k(t) = 2−jψ0(2−jt−k), j ∈ Z, k ∈ Z} denote the collection
of templates of ψ0, dilated to scales a = 2j , and translated to
time positions 2jk. Let us further assume that the {ψj,k(t), j ∈
Z, k ∈ Z} forms an orthonormal basis of L2(R). Let X(t),
t ∈ [0, n) denote the process under analysis and n its observa-
tion duration. The wavelet coefficients of X are obtained as
comparisons, by means of inner products: dX(j, k) = 〈ψj,k|X〉.
The dX(j, k) therefore provide a time-scale representation of X
that fully characterizes it: X(t) =

∑
j,k dX(j, k)ψj,k(t). For a

detailed introduction to wavelet transforms, the reader is re-
ferred to e.g., [16, 17].
Wavelet Leaders. Let us now further assume that ψ0(t) has
a compact time support and let us introduce the indexing λj,k =
[k2j , (k+1)2j) and the union 3λj,k = λj,k−1∪λj,k∪λj,k+1. The
wavelet Leaders LX(j, k) are defined as

LX(j, k) = sup
λ′⊂3λj,k

|dλ′ |, (2)

where the supremum is taken on the discrete wavelet coefficients
dX(·, ·) in the time neighborhood 3λj,k over all finer scales 2j′

<
2j . Fig. 1 illustrates this definition.

2.2 Multifractal Analysis

Multifractal spectrum. Multifractal analysis aims at char-
acterizing the signal X under analysis through the description
of the variations along time of the regularity of its sample path.
Such a local regularity is measured by means of Hölder expo-
nents h(t). The Hölder exponent quantifies the strength of the
singular behavior of X around t0, by comparing the local vari-
ations of X around t0 to a local power law behavior: X(t0) is
said to belong to Cα(t0) with α ≥ 0 if there exists a constant
C > 0 and a polynomial Pt0(t) with deg(Pt0) < α such that:

|X(t)− Pt0(t)| ≤ C|t− t0|α. (3)

The Hölder exponent is defined as the largest such α:

h(t0) = sup{α : X ∈ Cα(t0)}. (4)

2

(Jaffard et al, 2006)
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Oscillation exponents

Oscillation exponent β to describe local oscillations :

Example : chirp singularities

f (x) = |x − x0|h sin( 1
|x−x0|β

), α ∈ R, β ∈ R∗.

h Regularity exponent

only Wavelet Leaders have the correct behavior :

Lf (a, x) ∼ ah(x)
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Fractional Integration

Definition : in Fourier space or in orthogonal wavelet bases

I s [f ] = F−1
[∫ F [f ](ξ)

(1+ξ2)s/2 dξ
]
⇔ replace cf (j , k) by

cs
f (j , k) = cf (j , k)/2sj .

Typical behavior for cusp hs(x) = h(x) + s
for chirps hs(x) = h(x) + (1 + β(x))s

β(x) = lim
s→0

dhs(x)

ds
− 1

β(x) = 0 for cusp
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Application to cusp and Chirp
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Roux Stéphane Toward a Multifractal Formalism for oscillating singularities



Regularity exponent and Multifractal formalism
Oscillation exponent and fractional integration
Application to synthetic and experimental data

Conclusions

Oscillation exponents
Fractional Integration
Multifractal Formalism for Oscillating Singularities

Multiresolution coefficients

For all singularities (chirps or cusp)

L(j , x) ∼ 2−h(x)j

Ls(j , x) ∼ 2−hs(x)j = 2−(h(x)+(1+β(x))s)j .

We define a new Multiresolution coefficient, the β-leaders :

Bs(j , x) =
1

2j
(Ls(j , x)/L(j , x))1/s for s → 0

⇒ Bs(j , x) ∼ 2−β(x)j
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Multifractal Formalism for Oscillating Singularities

Mq(j) = 〈|B(j , k)|q〉 ∼ ajζβ(q)

hq(j) = 〈B̂(j , k) log |B(j , k)|〉 ∼ 2jβ(q)

Dq(j) = 〈B̂(j , k) log B̂(j , k)〉 ∼ ajDβ(q)

with B̂(j , k) = |B(j , k)|q/
∑

k |B(j , k)|q

C1(j) = 〈log |B(j , k)|〉 ∼ < cβ
1 > log(2j)

C2(j) = 〈(log |B(j , k)|)2〉 − 〈log |B(j , k)|〉2 ∼ −cβ
2 log(2j)
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Application to
synthetic processes
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Fractional Brownian Motion

All estimations are done with 500 realisations of 217 points

Theoretical (•) and estimated DS(hs) spectrum
(with Wavelet Leaders)

c1 = 0.04
c2 = 10−3
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Translation of speed s
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Fractional Brownian Motion

Theoretical (•) and estimated D(β) spectrum of oscillation
(with Wavelet β-Leaders; s = 0.2)
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D(β) maximum for β = 0 ⇒ no oscillating singularity.

Roux Stéphane Toward a Multifractal Formalism for oscillating singularities



Regularity exponent and Multifractal formalism
Oscillation exponent and fractional integration
Application to synthetic and experimental data

Conclusions

Fractional Brownian Motion
Lacunary Wavelet Series
Random Wavelet Cascade & Series
Fully developed Turbulence

Lacunary Wavelet Series

With an orthonormal wavelet basis (in d dimension)
On the 2dj wavelet coefficients c(j , x)
we choose at random 2γj coefficients with value 2αj

The other coefficients have a null value.

Theoretical DS(hs) spectrum (α = 0.2, γ = 0.5)

LWS LWS + FBM
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Travel at speed > s Travel at speed s ?
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Lacunary Wavelet Series

Theoretical (—) and estimated (?) DS(hs) singularity spectrum
(with Wavelet Leaders)
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Lacunary Wavelet Series

Theoretical (—) and estimated D(β) spectrum of oscillation
(with Wavelet β-Leaders; s = 0.2)

LWS LWS + FBM
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D(β) maximum for β > 0
⇒ detection of oscillating singularities

unsatisfactory estimation
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Random Wavelet Cascade & Series

c(j , k) orthonormal wavelet bases

Fig. A.1 – Illustration de la règle de construction des coefficients en ondelettes dj,k, à
partir du coefficient d0,1 suivant la procédure hiérarchique définie dans l’équation (A.4).
Le coefficient c0,1 est choisi arbitrairement, par exemple égal à 0.

• ∀j, j′ ∈ ZZ, Wj ⊥ Wj′ et L2(IR) = ⊕j∈ZZWj .

• ∀j0 ∈ ZZ, L2(IR) = Vj0 ⊕∞j=j0 Wj .

• Il existe une ondelette ψ ∈ L2(IR) telle que ∀j ∈ ZZ, {ψj,k = 2j/2ψ(2j/2x − k)}k∈ZZ

soit une base orthogonale de Wj .

Ainsi, ∀f ∈ L2(IR), f peut s’écrire sous la forme :

f =
∑

j∈ZZ

∑

k∈ZZ

< ψj,k | f > ψj,k =
∑

j∈ZZ

∑

k∈ZZ

dj,kψj,k , (A.2)

mais aussi

f =
∑

k∈ZZ

cj0,kφj0,k +
∑

j≥j0

∑

k∈ZZ

dj,kψj,k ∀j0 ∈ ZZ , (A.3)

La donnée d’une fonction d’échelle φ et d’une ondelette conjuguée ψ, ainsi que la donnée

des ensembles {dj,k}j≥j0,k∈ZZ et {cj0,k}k∈ZZ pour un j0 fixé, permet donc de caractériser de

270

RWC :
c(j = 0, .) Gaussian

Multiplicative weight
Mj log-normal for all j .
(m = c1,σ

2 = c2)

Then reconstruction

RWS:
same as RWC
but random shuffling of
c(j , .) for all j
before reconstruction.
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Random Wavelet Cascade & Series

Theoretical DS(hs) singularity spectrum
(c1 = 0.34, c2 = 0.026)
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Random Wavelet Cascade & Series

Theoretical and estimated DS(hs) singularity spectrum
(c1 = 0.34, c2 = 0.026)
(with Wavelet Leaders)
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(estimation : c1 = 0.35, c2 = 0.025)
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Theoretical (•) and estimated D(β) spectrum of oscillation
(with Wavelet β-Leaders; s = 0.2)
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D(β) maximum for β = 0
⇒ no oscillating singularity.

D(β) maximum for β > 0
⇒ oscillating singularities
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Fully developed Turbulence

Longitudinal velocity at one location

Wind Tunnel - Rλ ∼ 2000
(Castaing et al 1993)

Helium Jet - Rλ = 929
(Chanal et al 2000)

v

t t

300 realisations of 217 points 500 realisations of 217 points
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Fully developed Turbulence

Estimated (?) DS(hs) singularity spectrum
(with Wavelet Leaders)

- - - Theoretical RWC (c1 = 0.34, c2 = 0.026)
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No deformation - translation of speed ∼ s
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Fully developed Turbulence

Estimated (◦) D(β) spectrum of oscillation
(with Wavelet β-Leaders; s = 0.2)

◦ estimated RWC (c1 = 0.34, c2 = 0.026)

Modane Jet
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D(β) maximum for β slighly negative ⇒ no oscillating singularity.
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Conclusions

allow us to detect the presence of oscillating singularity
in multifractal fields

unsatisfactory estimates of D(β)

implemented for 1D or 2D data set

almost no extra computational cost compare to regular MF

no oscillating singularity found in turbulence data
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