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Motivation

Fully developed Turbulence

@ Intermittency Phenomenom =- Multifractal Analysis :
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@ Is there any oscillating singularities?
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Regularity exponent and Multifractal formalism

Regularity exponent
and
Multifractal formalism

Roux Stéphane Toward a Multifractal Formalism for oscillating singularities



Regularity exponent and Multifractal formalism ety GEera

Multifractal Formalism
Multiresolution coefficient

Regularity exponent

f(x), x € [0,n) Signal
@ local singularity exponent : the Holder exponent
|F(x) = Pa(x = x0) | < Clx — 30| h(x) € RF
Pn(x — x0) polynomial of order N, N < h(xp) < N + 1.

Example : Cusp singularities, f(x) = |x — xo|", h€ R

o T¢(a,x) ~ a"™,  Multiresolution Coefficients of f
depending on a space parameter x
and a scale parameter a.
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Regularity exponent and Multifractal formalism RemlEiy cmeme:

Multifractal Formalism
Multiresolution coefficient

Multifractal Formalism

@ Scale Invariance :
Mq(a) = <|Tf(aax)‘q> = anC(q)7 ac [777 L]v L/T/ > 1
@ Singularity spectrum
D(h) = du{x|h(x) = h}

dy Haussdorf (or fractal) dimension.

(Parisi and Frisch 1985)
= probability to find h at scale a is P,(h) = al—D(h)

@ Multifractal Formalism

¢(q) and D(h) are linked by a Legendre Transform

((g) = miny(gh — D(h)) and D(h) = ming(gh —((q))
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Regularity exponent and Multifractal formalism

Multiresolution coefficient

Multifractal Formalism

o My(a) = (|T(a,x)|%) ~ a*@
q linear regressions for ((q)
+ Legendre transform for D(h)

o hy(a) = (T(a,x)log|T(a,x)|) ~ aha)
Dy(a) = (T (a, x)log T(a,x)) ~ aP(@)
with T(a,x) = | T(a,x)|7/ 32, | T(a, x)|
2q linear regressions

(Muzy et al 1994)

e (i(a) = (log|T(a,x)|) ~ c1log(a)
Co(a) = ((log| T(a,x)[)?) — (log | T(a, x)[)* ~ —cz log(a)
C(Q) =c1q— 2q2+ C3q3_|_
(Castalng et al 1993, Delour et al 2001)
Only two linear regressions : ¢ = 0 < monofractal
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Regularity exponent and Multifractal formalism NP
gularity exponent

Multifractal Formalism
Multiresolution coefficient

Multiresolution coefficients used

e Wavelet coefficients of a Dyadic (¢r(J, k))
or a continuous Wavelet Transform

o WTMM defined from continuous WT (Arneodo et al 1995)
e Wavelet Leaders defined from Dyadic WT : L¢(j, k)
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(Jaffard et al, 2006)
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Oscillation exponent and fractional integration

o
m for Oscillating Singularities

Oscillation exponents
and
fractional integration
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Oscillation exponents
Fractional Integration
Multifractal Formalism for Oscillating Singularities

Oscillation exponent and fractional integration

Oscillation exponents

@ Oscillation exponent ( to describe local oscillations :
Example : chirp singularities

f(x) = |x — xo|"sin( |;) aecR, geR"

[x—x0

h Regularity exponent

@ only Wavelet Leaders have the correct behavior :

Le(a, x) ~ a"®)
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Oscillation exponents
Fractional Integration
Multifractal Formalism for Oscillating Singularities

Oscillation exponent and fractional integration

Fractional Integration

Definition : in Fourier space or in orthogonal wavelet bases

I5[f] = F! {f (ﬁglz)92 d§] & replace cf(j, k) by
iU, k) = cr (U, k) /2.

Typical behavior for cusp  h*(x) = h(x) +s
for chirps  h*(x) = h(

B(x) = 0 for cusp
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Oscillation exponents
Fractional Integration
Multifractal Formalism for Oscillating Singularities

Oscillation exponent and fractional integration

Application to cusp and Chirp

2
h=04-3=0 h=04-03=04

z0=1/3 10 =1/3

% v [ 5 1 L(j, k) leaders of the signal
L*(j, k) leaders of the

i h=0.38 h=0.41 . . )
3 = fractionally integrated signal
s by a factor s
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Oscillation exponents
Fractional Integration
Multifractal Formalism for Oscillating Singularities

Oscillation exponent and fractional integration

Multiresolution coefficients

For all singularities (chirps or cusp)
L(j,X) ~ 27h(x)_j
L°(j,x) ~ o—h*(x)j — o= (h(x)+(1+5(x))s)j

We define a new Multiresolution coefficient, the (3-leaders :

B(j.x) = (L0, /LG, 1)) fors — 0

= B2(j,x) ~ 270V
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Oscillation exponents
Fractional Integration
Multifractal Formalism for Oscillating Singularities

Oscillation exponent and fractional integration

Multifractal Formalism for Oscillating Singularities

o My(j) = (|B(j, k)|9) ~ <" (@)
© hqlij) = (BU, k) log| BUj, K)|) ~ 2779
Dq(j) = (B(j, k) log B(j, k)) ~ &/P"(4)
with B(j, k) = |B(j, k)|7/ X« [BU, k)|

o Gi(j) = (log |BU, k)]) ~ < ¢ >log(2/) -
Ca(j) = ((log| B(j, k)])?) — (log| Bj, k)[)? ~ —c3 log(2/)
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Application to synthetic and experimental data

Application to
synthetic processes
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Fractional Brownian Motion
Lacunary
Application to synthetic and experimental data

Fully developed Turbulence

Fractional Brownian Motion

All estimations are done with 500 realisations of 217 points

Theoretical () and estimated D*(h*) spectrum

(with Wavelet Leaders)
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Fractiona ian Motion
Lacuna t S
Application to synthetic and experimental data Random

Fully d

Fractional Brownian Motion

Theoretical (o) and estimated D([3) spectrum of oscillation
(with Wavelet -Leaders; s = 0.2)
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D(3) maximum for 3 = 0 = no oscillating singularity.
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Fractional Brownian Motion
(=
Application to synthetic and experimental data

Lacunary Wavelet Series

With an orthonormal wavelet basis (in d dimension)
On the 29 wavelet coefficients c(j, x)

we choose at random 2% coefficients with value 2%
The other coefficients have a null value.

Theoretical D°(h°) spectrum (o = 0.2, v = 0.5)
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Fractional Bro n Motion
Lacunary Wavelet Series

Random elet Cascade & Series
Fully dev d Turbulence

Application to synthetic and experimental data

Lacunary Wavelet Series

Theoretical (—) and estimated (x) D°(h®) singularity spectrum
(with Wavelet Leaders)
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Fr onal Broy n Motion
Lacunary Wavelet Series
Application to synthetic and experimental data Random elet C de & Series

Lacunary Wavelet Series

Theoretical (—) and estimated D(/3) spectrum of oscillation
(with Wavelet 3-Leaders; s = 0.2)
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D(3) maximum for 3 > 0
= detection of oscillating singularities
unsatisfactory estimation
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Application to synthetic and experimental data
Fully developed Turbulence

Random Wavelet Cascade & Series

c(j, k) orthonormal wavelet bases
RWC :

d, c(j =0,.) Gaussian
Multiplicative weight

j=0 M; log-normal for all j.
V N (m — C]_,O'2 — C2)
=1 < Then reconstruction
ey
j=2 RWS

same as RWC
Yof \Me Mz/\Ne M/ e M/ Ve but random shuffling of

c(j,.) for all j
. before reconstruction.
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Application to synthetic and experimental data Random Wavelet Cascade & Series
Fully developed Turbulence

Random Wavelet Cascade & Series

Theoretical D°(h®) singularity spectrum
(C1 = 0.34, Cy = 0.026)
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t S
Application to synthetic and experimental data avelet Cascade & Series
Fully developed Turbulence

Random Wavelet Cascade & Series

Theoretical and estimated D°(h®) singularity spectrum
(C1 = 0.34, Cy = 0.026)
(with Wavelet Leaders)
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Application to synthetic and experimental data avelet Cascade & Series
Fully developed Turbulence

Random Wavelet Cascade & Series

Theoretical (o) and estimated D(/3) spectrum of oscillation
(with Wavelet (-Leaders; s = 0.2)
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D(3) maximum for 3 =0 D(3) maximum for 3 > 0

= no oscillating singularity. = oscillating singularities
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Fractional Brownian N
Lacuna elet S

Application to synthetic and experimental data Random Wavelet Cascade & Series
Fully developed Turbulence

Fully developed Turbulence

Longitudinal velocity at one location

Wind Tunnel - Ry ~ 2000 Helium Jet - Ry = 929
(Castaing et al 1993) (Chanal et al 2000)
|
. \|
t t
300 realisations of 217 points 500 realisations of 217 points
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Application to synthetic and experimental data

Rwdom

e e & Series
Fully developed Turbulence
Fully developed Turbulence

Estimated (*) D>(h®) singularity spectrum
(with Wavelet Leaders)

- - - Theoretical RWC (¢; = 0.34, ¢, = 0.026)
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Application to synthetic and experimental data Random e
Fully developed Turbulence

Fully developed Turbulence

Estimated (o) D([3) spectrum of oscillation
(with Wavelet -Leaders; s = 0.2)

o estimated RWC (¢; = 0.34, c; = 0.026)
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D(3) maximum for 3 slighly negative = no oscillating singularity.
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Conclusions

Conclusions

allow us to detect the presence of oscillating singularity
in multifractal fields

unsatisfactory estimates of D((3)
implemented for 1D or 2D data set
almost no extra computational cost compare to regular MF

no oscillating singularity found in turbulence data

Roux Stéphane Toward a Multifractal Formalism for oscillating singularities



	Regularity exponent and Multifractal formalism
	Regularity exponent
	Multifractal Formalism
	Multiresolution coefficient

	Oscillation exponent and fractional integration
	Oscillation exponents
	Fractional Integration
	Multifractal Formalism for Oscillating Singularities

	Application to synthetic and experimental data
	Fractional Brownian Motion
	Lacunary Wavelet Series
	Random Wavelet Cascade & Series
	Fully developed Turbulence

	Conclusions

