Toward a Multifractal Formalism for oscillating singularities

Roux, S.G.; Jaffard, S.*; Abry, P.

Laboratoire de Physique, École Normale Supérieure de Lyon, France

* Laboratoire d'Analyse et de Mathématiques Appliquées, Université Paris Est, France.

Wavelets and fractals, University of Liège, April 26-28, 2010

3 N 4 3 N

Motivation

Fully developed Turbulence

• Intermittency Phenomenom \Rightarrow Multifractal Analysis :

Intermittency characterized by c_2

• Is there any oscillating singularities?

Outline

Goal : detect oscillating singularities in random field

- Regularity exponent and Multifractal formalism
- Oscillation exponent and fractional integration
- Multifractal formalim for oscillating singularities
- Application to synthetic and experimental data
- Conclusions

・ 同 ト ・ ヨ ト ・ ヨ ト

Regularity exponent Multifractal Formalism Multiresolution coefficient

Regularity exponent and Multifractal formalism

Conclusions

A 10

→ 3 → 4 3

Regularity exponent Multifractal Formalism Multiresolution coefficient

Regularity exponent

 $f(x), x \in [0, n)$ Signal

• local singularity exponent : the Hölder exponent

 $|f(x) - P_n(x - x_0)| \le C|x - x_0|^{h(x_0)}$ $h(x_0) \in \mathbb{R}^+$

 $P_N(x - x_0)$ polynomial of order N, $N < h(x_0) < N + 1$.

 $\underline{\mathsf{Example}} : \mathsf{Cusp singularities}, \ f(x) = |x - x_0|^h, \ h \in \mathbb{R}$

 T_f(a, x) ~ a^{h(x)}, Multiresolution Coefficients of f depending on a space parameter x and a scale parameter a.

Regularity exponent Multifractal Formalism Multiresolution coefficient

Multifractal Formalism

• Scale Invariance :

$$M_q(a) = \langle |T_f(a,x)|^q
angle = F_q a^{\zeta(q)}, \; a \in [\eta,L], \; L/\eta \gg 1$$

• Singularity spectrum

$$D(h) = d_H\{x \mid h(x) = h\}$$

 d_H Haussdorf (or fractal) dimension.

(Parisi and Frisch 1985) \Rightarrow probability to find *h* at scale *a* is $P_a(h) = a^{1-D(h)}$

Multifractal Formalism

 $\zeta(q)$ and D(h) are linked by a Legendre Transform

 $\zeta(q) = \min_h(qh - D(h)) \text{ and } D(h) = \min_q(qh - \zeta(q))$

Regularity exponent Multifractal Formalism Multiresolution coefficient

Multifractal Formalism

•
$$M_q(a) = \langle |T(a,x)|^q \rangle \sim a^{\zeta(q)}$$

 q linear regressions for $\zeta(q)$
 $+$ Legendre transform for $D(h)$

•
$$h_q(a) = \langle \hat{T}(a, x) \log |T(a, x)| \rangle \sim a^{h(q)}$$

 $D_q(a) = \langle \hat{T}(a, x) \log \hat{T}(a, x) \rangle \sim a^{D(q)}$
with $\hat{T}(a, x) = |T(a, x)|^q / \sum_x |T(a, x)|^q$
 $2q$ linear regressions

$$(Muzy \ et \ al \ 1994)$$
• $C_1(a) = \langle \log |T(a,x)| \rangle \sim c_1 \log(a)$
 $C_2(a) = \langle (\log |T(a,x)|)^2 \rangle - \langle \log |T(a,x)| \rangle^2 \sim -c_2 \log(a)$
 $\zeta(q) = c_1 q - \frac{c_2}{2}q^2 + \frac{c_3}{6}q^3 + \dots$
(Castaing et al 1993, Delour et al 2001)
Only two linear regressions : $c_2 = 0 \Leftrightarrow$ monofractal

Regularity exponent Multifractal Formalism Multiresolution coefficient

Multiresolution coefficients used

- Wavelet coefficients of a Dyadic (c_f(j, k)) or a continuous Wavelet Transform
- WTMM defined from continuous WT (Arneodo *et al* 1995)
- Wavelet Leaders defined from Dyadic WT : $L_f(j, k)$

| 4 同 1 4 三 1 4 三 1

Oscillation exponents Fractional Integration Multifractal Formalism for Oscillating Singularities

Oscillation exponents and fractional integration

/□ ▶ < 글 ▶ < 글

Oscillation exponents Fractional Integration Multifractal Formalism for Oscillating Singularities

Oscillation exponents

Oscillation exponent β to describe local oscillations :
 Example : chirp singularities

$$f(x) = |x - x_0|^h \sin(\frac{1}{|x - x_0|^{\beta}}), \alpha \in \mathbb{R}, \beta \in \mathbb{R}^*.$$

h Regularity exponent

• only Wavelet Leaders have the correct behavior :

 $L_f(a,x) \sim a^{h(x)}$

Oscillation exponents Fractional Integration Multifractal Formalism for Oscillating Singularities

Fractional Integration

Definition : in Fourier space or in orthogonal wavelet bases

$$I^{s}[f] = \mathcal{F}^{-1}\left[\int rac{\mathcal{F}[f](\xi)}{(1+\xi^{2})^{s/2}}d\xi
ight] \Leftrightarrow ext{replace } c_{f}(j,k) ext{ by } c_{f}^{s}(j,k) = c_{f}(j,k)/2^{sj}.$$

Typical behavior for cusp $h^{s}(x) = h(x) + s$ for chirps $h^{s}(x) = h(x) + (1 + \beta(x))s$

$$\beta(x) = \lim_{s \to 0} \frac{dh^{s}(x)}{ds} - 1$$
$$\beta(x) = 0 \text{ for cusp}$$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Oscillation exponents Fractional Integration Multifractal Formalism for Oscillating Singularities

Application to cusp and Chirp

Roux Stéphane

Toward a Multifractal Formalism for oscillating singularities

Oscillation exponents Fractional Integration Multifractal Formalism for Oscillating Singularities

Multiresolution coefficients

For all singularities (chirps or cusp)

$$L(j,x) \sim 2^{-h(x)j}$$

$$L^{s}(j,x) \sim 2^{-h^{s}(x)j} = 2^{-(h(x)+(1+\beta(x))s)j}.$$

We define a new Multiresolution coefficient, the β -leaders :

$$B^{s}(j,x) = rac{1}{2^{j}}(L^{s}(j,x)/L(j,x))^{1/s}$$
 for $s
ightarrow 0$

 $\Rightarrow B^{s}(j,x) \sim 2^{-\beta(x)j}$

-

Oscillation exponents Fractional Integration Multifractal Formalism for Oscillating Singularities

Multifractal Formalism for Oscillating Singularities

•
$$M_q(j) = \langle |B(j,k)|^q \rangle \sim a^{j\zeta^\beta(q)}$$

•
$$h_q(j) = \langle \hat{B}(j,k) \log |B(j,k)| \rangle \sim 2^{j\beta(q)}$$

 $D_q(j) = \langle \hat{B}(j,k) \log \hat{B}(j,k) \rangle \sim a^{jD^\beta(q)}$
with $\hat{B}(j,k) = |B(j,k)|^q / \sum_k |B(j,k)|^q$

•
$$C_1(j) = \langle \log | \boldsymbol{B}(j,k) | \rangle \sim \langle \boldsymbol{c}_1^\beta \rangle \log(2^j)$$

 $C_2(j) = \langle (\log | \boldsymbol{B}(j,k) |)^2 \rangle - \langle \log | \boldsymbol{B}(j,k) | \rangle^2 \sim -\boldsymbol{c}_2^\beta \log(2^j)$

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Fractional Brownian Motion Lacunary Wavelet Series Random Wavelet Cascade & Series Fully developed Turbulence

Application to synthetic processes

・ 同 ト ・ ヨ ト ・ ヨ

Fractional Brownian Motion Lacunary Wavelet Series Random Wavelet Cascade & Series Fully developed Turbulence

Fractional Brownian Motion

All estimations are done with 500 realisations of 2¹⁷ points

Theoretical (•) and estimated $D^{S}(h^{s})$ spectrum (with Wavelet Leaders)

Roux Stéphane Toward a Multifractal Formalism for oscillating singularities

Fractional Brownian Motion Lacunary Wavelet Series Random Wavelet Cascade & Series Fully developed Turbulence

Fractional Brownian Motion

Theoretical (•) and estimated $D(\beta)$ spectrum of oscillation (with Wavelet β -Leaders; s = 0.2)

 $D(\beta)$ maximum for $\beta = 0 \Rightarrow$ no oscillating singularity.

Fractional Brownian Motion Lacunary Wavelet Series Random Wavelet Cascade & Series Fully developed Turbulence

Lacunary Wavelet Series

With an orthonormal wavelet basis (in *d* dimension) On the 2^{dj} wavelet coefficients c(j, x)we choose at random $2^{\gamma j}$ coefficients with value $2^{\alpha j}$ The other coefficients have a null value.

Fractional Brownian Motion Lacunary Wavelet Series Random Wavelet Cascade & Series Fully developed Turbulence

Lacunary Wavelet Series

Theoretical (—) and estimated (*) $D^{S}(h^{s})$ singularity spectrum (with Wavelet Leaders)

イロト イポト イヨト イヨト

Fractional Brownian Motion Lacunary Wavelet Series Random Wavelet Cascade & Series Fully developed Turbulence

Lacunary Wavelet Series

Theoretical (—) and estimated $D(\beta)$ spectrum of oscillation (with Wavelet β -Leaders; s = 0.2)

 $D(\beta)$ maximum for $\beta > 0$ \Rightarrow detection of oscillating singularities unsatisfactory estimation

Roux Stéphane Toward a

Toward a Multifractal Formalism for oscillating singularities

Fractional Brownian Motion Lacunary Wavelet Series Random Wavelet Cascade & Series Fully developed Turbulence

Random Wavelet Cascade & Series

c(j, k) orthonormal wavelet bases

RWC c(i = 0, .) Gaussian Multiplicative weight M_i log-normal for all j. $(m = c_1, \sigma^2 = c_2)$ Then reconstruction RWS: same as RWC but random shuffling of c(j, .) for all j before reconstruction.

・ロト ・同ト ・ヨト ・ヨト

Fractional Brownian Motion Lacunary Wavelet Series Random Wavelet Cascade & Series Fully developed Turbulence

Random Wavelet Cascade & Series

Theoretical $D^{S}(h^{s})$ singularity spectrum ($c_{1} = 0.34, c_{2} = 0.026$)

Roux Stéphane Toward a Multifractal Formalism for oscillating singularities

(日) (同) (三) (三)

-

Fractional Brownian Motion Lacunary Wavelet Series Random Wavelet Cascade & Series Fully developed Turbulence

Random Wavelet Cascade & Series

Theoretical and estimated $D^{S}(h^{s})$ singularity spectrum ($c_{1} = 0.34, c_{2} = 0.026$) (with Wavelet Leaders)

Roux Stéphane Toward a Multifractal Formalism for oscillating singularities

Fractional Brownian Motion Lacunary Wavelet Series Random Wavelet Cascade & Series Fully developed Turbulence

Random Wavelet Cascade & Series

Theoretical (•) and estimated $D(\beta)$ spectrum of oscillation (with Wavelet β -Leaders; s = 0.2)

Roux Stéphane

Toward a Multifractal Formalism for oscillating singularities

Fractional Brownian Motion Lacunary Wavelet Series Random Wavelet Cascade & Series Fully developed Turbulence

Fully developed Turbulence

Longitudinal velocity at one location

Fully developed Turbulence

Fully developed Turbulence

Estimated (\star) $D^{S}(h^{s})$ singularity spectrum (with Wavelet Leaders)

- - - Theoretical RWC ($c_1 = 0.34$, $c_2 = 0.026$)

Toward a Multifractal Formalism for oscillating singularities

Fractional Brownian Motion Lacunary Wavelet Series Random Wavelet Cascade & Series Fully developed Turbulence

Fully developed Turbulence

Roux Stéphane Toward a Multifractal Formalism for oscillating singularities

Conclusions

- allow us to detect the presence of oscillating singularity in multifractal fields
- unsatisfactory estimates of $D(\beta)$
- implemented for 1D or 2D data set
- almost no extra computational cost compare to regular MF
- no oscillating singularity found in turbulence data