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THE ANALYSIS SO FAR

Time-domain and frequency-domain are traditional methods to
quantify metabolites;
Also Time-Frequency (Scale) methods have been used to
analyzing MRS signals;
The CWT using Morlet was presented in [4]. An example of pure
Creatine using the Morlet wavelet:

Fig. Freq. response of CRE at 4.7 T and its Morlet CWT (w0 = 10 rad/s, σ = 1, Fs = 4006, 41 s−1). Extracted from
A.-Suvichakorn and J.-P. Antoine, The Continuous Wavelet Transform in MRS, e-book FAST website, 2009
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QUESTIONS MADE BY THE AUTHORS

Questions made by the authors:
1 Can one make a Wavelet function with its spectrum "Matched" with some

MRS metabolite signal?
2 Can one estimate this metabolite’s parameters using the CWT with such a

wavelet function?
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THE AUTOCORRELATION FUNCTION

One answer can be the use of the concept of Autocorrelation
Functions.

The autocorrelation function estimator Rxx (τ) of an ergodic
process time series x(t) is ([3]):

Rxx (t) =

∫ ∞
−∞

x(τ)x(τ − t) dt =

∫ ∞
−∞

x(τ)x(τ + t) dτ, (1)

where x(t) means the complex conjugate of x(t).
In the frequency domain, the Fourier transform of Rxx , called
Sxx (ω) can be evaluated by the Wiener-Khintchine relation:

Sxx (ω) = F {Rxx (τ)} = |X (ω)|2 . (2)
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OBJECTIVES AND OUTLINE

Objectives:
1 Create a wavelet from a MRS pure metabolite signal

autocorrelation function;
2 Perform the CWT of a complex MRS signal using this wavelet;
3 Estimate the metabolite parameters.

Outline:
1 Find an Analytical Solution for CWT using classic MRS models and

autocorrelation wavelets form this model;
2 Create the discrete versions of signals and wavelets presented in

the analytical part and analyze them with YAWtb Matlab
Toolbox(Lorentzian Models);

3 Create discrete versions of signals and wavelets now based on the
metabolite database and analyze them with Matlab
(Metabolite-based Models);
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LORENTZIAN LINESHAPE

A simple classical FID MRS signal model x(t): The Lorentzian lineshape.

x(t) = A1e−D1t ei(ωs1 t+φ1) A1 > 0, D1 > 0. (3)

In the frequency domain this signal is defined by

X(ω) = 2πA1eiφ1δ(ω − (ωs1 + iD1)), (4)

where δ is the Dirac delta function.

Fig. Real part (blue line) and imaginary part
(red dash) of x(t) for A1 = 1, D1 = 1 s,
ωs1 = 32 rad/s, φ1 = 0 rad.

What is the autocorrelation function of this signal?
NOT a CLUE!!!
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MODIFIED LORENTZIAN LINESHAPE

A slightly modified FID MRS signal model x1(t) can be:

x1(t) = A1e−D1teiωs1 t θ(t), D1 > 0, (5)

where θ(t) is the Heaviside function (or step function).
In the frequency domain this signal is defined by

X1(ω) =
A1

[D1 + i(ω − ωs1 )]
. (6)

Now, the autocorrelation function (on freq. domain) is easily
computed:

Sxx (ω) =

∣∣∣∣ A1

D1 + i(ω − ωs1 )

∣∣∣∣2 =
A2

1

D2
1 + (ω − ωs1)2

. (7)
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THE ADMISSIBLE WAVELET FUNCTION

Is this function admissible? PROBABLY NOT.

What to do, then? As with Morlet, use a correction term. Then
the admissible wavelet function Ψadm(ω) becomes:

Ψadm(ω) =
A2

1

D2
1 + (ω − ωs1 )2

−
A2

1

D2
1 + (ω2 + ω2

s1
)
. (8)

Is this term really necessary?
As with Morlet, in practice the appropriate choice of D1 and ωs1
make its value numerically negligible, so that the correcting term
can indeed be omitted.

Ψ(ω) =
A2

1

D2
1 + (ω − ωs1 )2

. (9)
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THE WAVELET FUNCTION:

Fig. Ψadm(ω) (blue line) and Ψ(ω) (red dot) for A1 = 1, D1 = 1 and
ωs1 = 32 rad/s.

Fig. ψ(t), for A1 = 1, D1 = 1 and ωs1 = 32 rad/s: real part (blue line)
and imaginary part (red dash).
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THE CWT OF A LORENTZIAN MRS SIGNAL

Then, the CWT of the the Lorentzian lineshape signal x(t) using Ψ(ω) is:

S(b, a) =
1

2π

√
a
∫ ∞
−∞

2πA1ei φ1δ(ω − (ωs1 + i D1))
A2

1

D2
1 + (aω − ωs1)2

eiωb dω

=
√

a x(b)
A2

1

D2
1 + [ωs1 (a− 1) + i a D1]2

. (10)

S(b, a) diverges for a = 1 cause signal and wavelet have the same “damping factors" D1. It
cannot be used to estimate parameters, as in the Morlet case, but...

Using different “damping factors" D1 for the wavelet function and D11 for the signal, then
|S(b, a)|, for a = 1 will become:

|S(b, 1)| = |x(b)| |
A2

1

D2
1 − D2

11

|

= |A1| |e−D11b|
|A2

1|
|D2

1 − D2
11|

. (11)

So the signal’s damping factor can be calculated by:

D11 = −
d
db

ln |S(b, 1)| (12)
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THE (BEAUTIFUL) GRAPHICS

Fig. |S(b, a)| for A1 = 1, D1 = 1, ωs1 = 32
rad/s,b = [0, 2] s and a = [0.5, 1.5], a 6= 1. Fig. arg S(b, a) for A1 = 1, D1 = 1, ωs1 = 32

rad/s,b = [0, 2] s and a = [0.5, 1.5], a 6= 1.
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GENERALIZING FOR N-PEAKS SIGNALS

As many metabolites are multipeaked, we will generalize for N-peaks Lorentzian
signals.
The signal xN (t), a weighted sum of N Lorentzian components:

xN (t) =
N∑

n=1

Ane−Dn t ei(ωn t+φn); Dn > 0. (13)

The Fourier transform of xN (t):

XN (ω) = 2π
N∑

n=1

Aneiφnδ(ω − (ωsn + iDn)). (14)

The left truncated version of xN (t):

x
′
N (t) =

N∑
n=1

Ane−Dn t ei(ωsn t)θ(t), Dn > 0 , (15)

where θ(t) is the Heaviside function.
Now the Fourier transform of x

′
N (t)

X1N (ω) =
N∑

n=1

An

[Dn + i(ω − ωsn)]
. (16)
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THE N-PEAK WAVELET FUNCTION AND CWT

The autocorrelation of (15) in the frequency domain is:

Sx′N x′N
(ω) =

∣∣∣∣∣
N∑

n=1

An

Dn + i(ω − ωsn)

∣∣∣∣∣
2

≈
N∑

n=1

A2
n

D2
n + (ω − ωsn)2

. (17)

Under the considerations made, the autocorrelation wavelet function is:

ΨN (ω) =
N∑

n=1

A2
n

D2
n + (ω − ωsn)2

(18)

The CWT of the signal (13) using (18) as wavelet function is given by:

SN (b, a) =
√

a
∫ ∞
−∞

N∑
k=1

Ak eiφk δ(ω − (ωsk + iDk ))
N∑

n=1

A2
n

D2
n + (aω − ωsn )2

eiωb dω

=
√

a
N∑

k=1

xk (b)
N∑

n=1

A2
n

D2
n + [a(ωsk + iDk )− ωsn]2

(19)
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(ALSO BEAUTIFUL)GRAPHS OF 2 AND 3 PEAKS CWT

Fig. |S2(b, a)| for A1 = A2 = 1, D1 = D2 = 1,
ωs1 = 32 and ωs2 = 64 rad/s, b = [0, 2] s and
a = [0.1, 3], a 6= 1.0;

Fig. |S3(b, a)| for A1 = A2 = A3 = 1,
D1 = D2 = D3 = 1, ωs1 = 30, ωs2 = 60 and ωs2 = 90
rad/s, b = [0, 2] s and a = [0.1, 4], a 6= 1.0;
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THE N-PEAK DAMPING FACTORS ESTIMATION

An “oscillating" local maxima at a = 1;

Also, |SN(b, a)| have horizontal ridges at a = ωsn/ωsk , k 6= n;
k , n = 1, 2, ...,N.

Estimation of the damping factors:
1 Consider the wavelet function have damping factors Dn and the signal have

Dnn, Dn 6= Dnn for any n.
2 Choosing one of the other local maxima a = ωsn/ωsk , and considering that

the other factors are small enough in this scale, so only one term of (19) will
be significative and we can estimate the damping factor as:

d
db

ln |S(b,
ωsn

ωsk

)| ≈
d
db

ln |e−Dkk b| +
d
db

ln |Ak A2
n| −

d
db

ln |D2
n + [(ωsk + iDkk )− ωsn ]2|

≈ −Dkk . (20)

Summarizing: if (a) peaks are far enough from each other and;(b)
damping factors provide sharp peaks, the damping factors can
estimated by Dkk ≈ − d

db ln |S(b, ωsn
ωsk

)|.
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WHAT HAPPENS WITH MORE REALISTIC SIGNALS?

What happens when one analyzes limited, discretized, noisy and
more realistic signals?

Two procedures proposed:
1 Create Discrete versions of signals and wavelets presented before

and analyze them with Matlab and YAWtb Toolbox (Lorentzian
Models);

2 Finally, create Discrete versions of signals and wavelets based on
the metabolite database and analyze them with Matlab
(Metabolite-based Models);

Next, in the Numerical Analysis section.
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NUMERICAL ANALYSIS WITH 1 PEAK LORENTZIAN

FUNCTION

A MATLAB c© function which implements

Ψ(ω) =
∣∣∣∑N

n=1
An

Dn+i(ω−ωsn )

∣∣∣2 were created (called“LorentzNd.m")
and added to YAWtb toolbox ([5]);

A N component discrete exponential signal was defined by:

x1[n] =


0, 0 ≤ n ≤ ( N

4 − 1),∑N
n=1 An e−D1(n− N

4 )ts eiωsn (n− N
4 )ts , ( N

4 ) ≤ n ≤ ( 3N
4 − 1),

0, ( 3N
4 ) ≤ n ≤ N − 1,

where ts = 1/fs is the sampling period in seconds.

The CWT of this signal using the “LorentzNd" function, with the
same frequency and damping factors as the signals, for
n = 1,2,3 was performed;
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THE CWT RESULTS FOR 1 COMPONENT

Fig. |CWTx1[n]| for A = 1, D1 = 1, ωs1 = 32 rad/s,
n = [1, 4096] and a = [0.5, 1.5] using the “Lorentz1d"
wavelet.

Fig. Skeleton of the CWT, for A = 1, D1 = 1, ωs1 = 32
rad/s, n = [1, 4096] and a = [0.5, 1.5] using the
“Lorentz1d" wavelet.
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THE CWT RESULTS FOR 2 COMPONENTS

Fig. |CWTx2[n]| for A1 = A2 = 1, D1 = D2 = 1 1/s,
ωs1 = 32 and ωs2 = 64 rad/s, ts = 1/256 s and
N = 4096 for “Lorentz2Pk1d" wavelet.

Fig. Skeleton of CWT for A1 = A2 = 1, D1 = D2 = 1
1/s, ωs1 = 32 and ωs2 = 64 rad/s, ts = 1/256 s and
N = 4096 for “Lorentz2Pk1d" wavelet.
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...AND THE CWT RESULTS FOR 3 COMPONENTS:

Fig. |CWTx3[n]| for A1 = A2 = A3 = 1,
D1 = D2 = D3 = 1 1/s, ωs1 = 30, ωs2 = 60 and
ωs2 = 90 rad/s, ts = 1/256 s, N = 4096 and
a = [0.5, 5] for “Lorentz3Pk1d" wavelet.

Fig. Skeleton of CWT for A1 = A2 = A3 = 1,
D1 = D2 = D3 = 1 1/s, ωs1 = 30, ωs2 = 60 and
ωs2 = 90 rad/s, ts = 1/256 s, N = 4096 and
a = [0.5, 5] for “Lorentz3Pk1d" wavelet.
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NUMERICAL ANALYSIS FOR SIGNALS WITH NOISE

Here the goal was to find the limit of signal detection in presence
of noise by means of autocorrelation wavelets ;

1 White gaussian noise was added to signals at different SNR levels;
2 The CWT was performed (N peak was analyzed by its related N

autocorrelation wavelet;
3 The results are in the limit of signal detection by its wavelet (still

have the horizontal ridge);
4 The SNR of this limit were in average ≈ −20dB
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SOME NOISE RESULTS
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CREATING AND USING METABOLITE-BASED WAVELETS

Numerical analysis with Metabolite-based wavelets:
1 Take signals from one in vitro metabolite database;
2 Create its related Autocorrelation Wavelets;
3 Analyze a mixture of metabolites by one related autocorrelation wavelet with Matlab;

The Algorithm:

1 Calculate autocorrelation function R
of metabolite profile φ:

R[n] =
+N∑

k=−N

φ[k ]φ[n − k ] (21)

using Matlab function xcorr;
2 Subtract its mean value:

ψ[n] = R[n]− E{R[n]} (22)

Metabolite profile (Cre)
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WAVELET CONSTRUCTION RESULT

Metabolite profile (Cre)
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Cre-based wavelet
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HOW TO DILATE DISCRETE WAVELETS?

PROBLEM: Mother wavelet is Discrete , no analytical expression;

SOLUTION: An discrete upsampler/downsampler system was
used.

Fig. Block diagram of Upsampler/downsampler system. L,M ∈ (Z ).

Wavelet will be expanded by an integer factor of L and contracted
by an factor of M.

a = L/M.

Adalberto Schuck Jr. Analysis of MRS Signals with Autocorr. Wavelets 25/37



Introduction
The Analytical Analysis

The Numerical Analysis:

Using Lorentzian Models
Using Metabolite-based wavelets

EXAMPLE OF DILATED WAVELET

Cre-based wavelet (real part) at different scales:
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SIGNAL 1: COMBINATION NAA + CRE WITHOUT LAC

Sum of pure Naa and Cre signals, no noise:
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SIGNAL 2: COMBINATION NAA + CRE + LAC

Sum of pure Naa and Cre signals PLUS Lac, no noise:

−0.500.5
0

2

4

6

8

10

12
x 10

7

f [kHz]

|S
(f

)|

Fig. Naa + Cre

−0.500.5
0

2

4

6

8

10

12
x 10

7 Lac

f [kHz]

|Y
La

c(f
)|

Fig. Lac part

−0.500.5
0

2

4

6

8

10

12
x 10

7

f [kHz]

|S
(f

)|

Fig. Naa + Cre + Lac

Adalberto Schuck Jr. Analysis of MRS Signals with Autocorr. Wavelets 28/37



Introduction
The Analytical Analysis

The Numerical Analysis:

Using Lorentzian Models
Using Metabolite-based wavelets

CWT ANALYSIS OF SIGNAL 1 WITH NAA-BASED

WAVELET
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CWT ANALYSIS OF SIGNAL 2 WITH NAA-BASED

WAVELET
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CWT ANALYSIS OF SIGNAL 1 WITH CRE-BASED

WAVELET
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CWT ANALYSIS OF SIGNAL 2 WITH CRE-BASED

WAVELET
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Naa+Cre+Lac composed signal
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CWT ANALYSIS OF SIGNAL 2 WITH LAC-BASED
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THE CONCLUSIONS SO FAR

Analytical analysis:
1 Analytical expressions for Wavelet function and CWT, using Lorentzian

models were made;
2 Horizontal ridges at a = 1 means Presence of Metabolite which generated

the autocorr.wavelet;
3 For 1 peak, the Damping factor can be found. For more than one peak, the

Damping factors can be approximated from horizontal ridges at a 6= 1;

Numerical analysis with Lorentzian signals:
1 Discretization and time limitation of signals changed a little the results

(“lateral" Ridges are not smooth);
2 With multi-peaked signal/autocorr. wavelet, the damping estimation is

harder;
3 Single signals could be detected at ≈ −20dB SNR;

Numerical analysis with metabolite-based signals:
1 Algorithms for autocorrelation wavelet creation, dilation and CWT were

made;
2 The metabolites presence could be detected in the mixture by its related

wavelet;
3 Parameters estimation is almost done (so wait a little bit more).
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