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The tr ysi
The Analytical Analysis The Autocorrelation Function
The Numerical Analysis: Obijectives and outline

THE ANALYSIS SO FAR

e Time-domain and frequency-domain are traditional methods to
quantify metabolites;

e Also Time-Frequency (Scale) methods have been used to
analyzing MRS signals;

e The CWT using Morlet was presented in [4]. An example of pure
Creatine using the Morlet wavelet:
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Fig. Freq. response of CRE at 4.7 T and its Morlet CWT (wo = 10rad/s, o = 1, Fg = 4006, 41 571). Extracted from
A.-Suvichakorn and J.-P. Antoine, The Continuous Wavelet Transform in MRS, e-book FAST website, 2009
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The traditional analysis
The Autocorrelation Function
Obijectives and outline

QUESTIONS MADE BY THE AUTHORS

@ Questions made by the authors:
@ Can one make a Wavelet function with its spectrum "Matched" with some
MRS metabolite signal?

@ Can one estimate this metabolite’s parameters using the CWT with such a

wavelet function?
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Introduction The traditional analysis
The Analytical Analysis The Autocorrelation Function
The Numerical Analysis: Obijectives and outline

THE AUTOCORRELATION FUNCTION

e One answer can be the use of the concept of Autocorrelation
Functions.

e The autocorrelation function estimator Ry (7) of an ergodic
process time series x(t) is ([3]):

Ru(t) = /OO x(r)x(r — t)dt = /OO x(T)x(r +t)dr, (1)

—00 —00

where x(t) means the complex conjugate of x(t).

e In the frequency domain, the Fourier transform of Ry, called
Sxx(w) can be evaluated by the Wiener-Khintchine relation:

Sx(w) = F{Ru(7)} = |X(W)|2- (2)
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Introduction The traditional analysis
The Analytical Analysis The Autocorrelation Function
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OBJECTIVES AND OUTLINE

e Objectives:
© Create a wavelet from a MRS pure metabolite signal
autocorrelation function;
@ Perform the CWT of a complex MRS signal using this wavelet;
© Estimate the metabolite parameters.

e Outline:

@ Find an Analytical Solution for CWT using classic MRS models and
autocorrelation wavelets form this model;

@ Create the discrete versions of signals and wavelets presented in
the analytical part and analyze them with YAWtb Matlab
Toolbox(Lorentzian Models);

@ Create discrete versions of signals and wavelets now based on the
metabolite database and analyze them with Matlab
(Metabolite-based Models);
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Introduction One peak model
The Analytical Analysis Generalizing for N-peaks
The Numerical Analysis: What happens with more realistic signals?

LORENTZIAN LINESHAPE

@ A simple classical FID MRS signal model x(t): The Lorentzian lineshape.

x(t) = Aje=Pitglws 1) A 5 0, D; > 0. 3)
@ In the frequency domain this signal is defined by
X(w) = 2mA1€716(w — (ws1 + iDy)), (@)

where § is the Dirac delta function.

)

Fig. Real part (blue line) and imaginary part
(red dash) of x(t) for Ay =1,Dy =1,
wgt = 32 rad/s, ¢4 = 0 rad.

Refxi))
——————— mfxit)

@ What is the autocorrelation function of this signal?
NOT a CLUE!!
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MODIFIED LORENTZIAN LINESHAPE

e A slightly modified FID MRS signal model x;(t) can be:
xi(t) = Are~Prte=tg(t), Dy > 0, (5)

where 6(t) is the Heaviside function (or step function).
e In the frequency domain this signal is defined by

Aq

Xi(w) = - . 6
) D i =] ©
e Now, the autocorrelation function (on freq. domain) is easily
computed:
A 2 A2
S = , = 1 : 7
() ‘ Dy + i(w — ws,) D12 + (w — wst )2 )
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THE ADMISSIBLE WAVELET FUNCTION

e Is this function admissible? PROBABLY NOT.

e What to do, then? As with Morlet, use a correction term. Then
the admissible wavelet function W4y (w) becomes:

AL AL

— . 8
Df + (w—ws )2 Df + (w? +w3) ®

wadm(w) =

@ Is this term really necessary?

e As with Morlet, in practice the appropriate choice of Dy and wsq
make its value numerically negligible, so that the correcting term
can indeed be omitted.

A

= D? + (w —ws )2

(9)
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Fig. Wy (w) (blue line) and W(w) (red dot) for Ay = 1, Dy = 1 and
wsy = 32 rad/s.
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Fig. ¢ (t), for Ay = 1, Dy = 1and wsy =82 rad/s: real part (blue line)
and imaginary part (red dash).
=] F E A



Introduction One peak model
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THE CWT OF A LORENTZIAN MRS SIGNAL

@ Then, the CWT of the the Lorentzian lineshape signal x(t) using W(w) is:
A

iwb
€ dw
D12 + (aw — Wst )2

1 oo .
S(b, a) = g\/5/ 21A1e ?16(w — (ws, +iDy))
A
D$+[ws1(a—1)+iaD1]2'

= va x(b) (10)
@ S(b, a) diverges for a = 1 cause signal and wavelet have the same “damping factors" D;. It
cannot be used to estimate parameters, as in the Morlet case, but...

@ Using different “damping factors" D; for the wavelet function and D;4 for the signal, then
|S(b, a)|, for a = 1 will become:

A
[S(b, 1)] = |x(b)] lﬂ \
1 11
- |AS|
= Al le” PP (11)
D¢ — D%
@ So the signal’s damping factor can be calculated by:

Dy = d In|S(b, 1)] (12)

"= )
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THE (BEAUTIFUL) GRAPHICS

One peak model
Generalizing for N-peaks

What happens with more realistic signals?

Fig. |S(b, a)| for Ay =1, Dy =1, ws, = 32
rad/s,b = [0,2] sand a = [0.5,1.5],a # 1.

Fig. arg S(b, a) for Ay =1, Dy =1, ws, =32
rad/s,b = [0,2] sand a = [0.5,1.5],a # 1.

(=]
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GENERALIZING FOR N-PEAKS SIGNALS

@ As many metabolites are multipeaked, we will generalize for N-peaks Lorentzian
signals.

@ The signal xy(t), a weighted sum of N Lorentzian components:
xn(t) = ZA e~ Dntgilwnt+én). p. > 0. (13)
The Fourier transform of xy( ):

N
Xn(w) =27  An€®76(w — (wsn + iDp)). (14)

n=1

The left truncated version of xy(t):

N
xu(t) = > Ane=Prtelleallo(t), Dy > 0, (15)
n=1
where 6(t) is the Heaviside function.
Now the Fourier transform of x,/\,(t)

Xin(w (16)

Z [Dn + I(UJ — (Usn)]
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THE N-PEAK WAVELET FUNCTION AND CWT

@ The autocorrelation of (15) in the frequency domain is:

2 N

N A A2
S 1o \W - n ~ n . 17
XNXN( ; Dp + i(w — wsn) nz:; D2 + (w — wsn)? (7)
@ Under the considerations made, the autocorrelation wavelet function is:
Vy(w) = —_ (18)
1 D% -+ (w — Uan)Z
@ The CWT of the signal (13) using (18) as wavelet function is given by:
N ) N A2 )
Sn(b, a f/ Ac€'Pk§(w — (ws, + iDk —n glwbgy
ba=val > (@ @t DD
Va 3 a
=./a Xk ( 19
; Kl g a(wsy + iDk) — wsn]? (19)
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_ s

Generalizing for N-peaks
What happens with more realistic signals?

(ALSO BEAUTIFUL)GRAPHS OF 2 AND 3 PEAKS CWT

Fig. |Sa(b, a)| for Ay = Ay =1, Dy = D2 = 1,

wst = 32 and wgp = 64 rad/s, b = [0, 2] s and

Fig. |Ss(b, a)| for Ay = A, = A3 =1,
a=1[0.1,3l,a#1.0;

Di =D, = Dy =1, we = 30, wez = 60 and we = 90
rad/s, b =[0,2] sand a=[0.1,4],a # 1.0;

=] F
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Introduction One peak model
The Analy izing for N-peaks
The Numerical Analy5|s What happens with more realistic signals?

THE N-PEAK DAMPING FACTORS ESTIMATION

@ An “oscillating” local maxima at a = 1;

@ Also, |Sn(b, a)| have horizontal ridges at a = ws, /ws,, kK # m;
k,n=1,2,...,N.

@ Estimation of the damping factors:

@ Consider the wavelet function have damping factors D, and the signal have
Dnpn, Dn # Dpn for any n.

© Choosing one of the other local maxima a = ws, /ws,, and considering that
the other factors are small enough in this scale, so only one term of (19) will
be significative and we can estimate the damping factor as:

d d _ d
—In|S(b ”S")| ~ In|e Dkk"|+ In|AKA | — —In|D + [(ws, + D) — wsp )
~ —Di . (20)

@ Summarizing: if (a) peaks are far enough from each other and;(b)
damping factors provide sharp peaks, the damping factors can
estimated by Di ~ — & In|S(b, = )|
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Introduction One peak model
The Analytical Analysis Generalizing for N-peaks
The Numerical Analysis: What happens with more realistic signals?

WHAT HAPPENS WITH MORE REALISTIC SIGNALS?

e What happens when one analyzes limited, discretized, noisy and
more realistic signals?

e Two procedures proposed:

@ Create Discrete versions of signals and wavelets presented before
and analyze them with Matlab and YAWtb Toolbox (Lorentzian
Models);

@ Finally, create Discrete versions of signals and wavelets based on
the metabolite database and analyze them with Matlab
(Metabolite-based Models);

e Next, in the Numerical Analysis section.
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Introduction
The Analytical Analysis
The Numerical Analysis:

NUMERICAL ANALYSIS WITH 1 PEAK LORENTZIAN
FUNCTION

Using Lorentzian Models
Using Metabolite-based wavelets

e A MATLAB® function which implements

2
V(w) = ‘Zﬁﬁ W were created (called“LorentzNd.m")
and added to YAWtb toolbox ([5]);

e A N component discrete exponential signal was defined by:

0, 0<n<(§-1),
x1[n] = Zg:1 A, e D1 (1= 9)ts giwsy(n=§)ts (%) <n< (% —1),
0, CM)y<n<N-1,

where t; = 1/fs is the sampling period in seconds.

e The CWT of this signal using the “LorentzNd" function, with the
same frequency and damping factors as the signals, for
n=1,2,3 was performed;

Adalberto Schuck Jr. Analysis of MRS Signals with Autocorr. Wavelets 17/37
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Using Lorentzian Models
Using Metabolite-based wavelets

THE CWT RESULTS FOR 1 COMPONENT

owrin
welet: Lorontz1p1d (k,=0.125, D=00039063)

Positions

Fig. |CWTxi[n]| for A=1, Dy = 1, we = 32 rads,

n = [1,4096] and a = [0.5, 1.5] using the “Lorentz1d"
wavelet.

Adalberto Schuck Jr.

Fig. Skeleton of the CWT, for A= 1, Dy = 1, wg1 = 32
rad/s, n = [1,4096] and a = [0.5, 1.5] using the
“Lorentz1d" wavelet.
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. . Using Lorentzian Models
The Analytical Analysis . N
. . Using Metabolite-based wavelets
The Numerical Analysis:

THE CWT RESULTS FOR 2 COMPONENTS

cwTin
Wavelet: Lorentz2p1d ( k10,125, D1=0.0039063, k 2=0.25, D2=0.0033063)

T =

Fig. Skeleton of CWT for Ay = A, =1,D; = D, =1

1/s, ws1 = 32 and wgp = 64 rad/s, ts = 1/256 s and
N = 4096 for “Lorentz2Pk1d" wavelet.

Fig. |CWTxz[n]| for Ay = A, =1,Dy = D, =1 1/s,
ws1 = 32 and wg = B4 rad/s, ts = 1/256 s and
N = 4096 for “Lorentz2Pk1d" wavelet.
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...AND THE CWT RESULTS FOR 3 COMPONENTS:

Using Lorentzian Models
Using Metabolite-based wavelets

oWTID. i s w12
Wavelel: Lorentz3p1d (i1=0.11719, D1=0.0039063, k,2=023435, D2=0.0039063, k 3=0.35156, D3=0,0039063)

P = |

Fig. Skeleton of CWT for Ay = A, = A3 =1,

Fig. |[CWTxz[n]| for Ay = A = A3 =1, Dy = D = D3 =1 1/s, wsy = 30, wsz = 60 and
Dy = D, = D3 =1 1/s, wg; = 30, wsp = 60 and wsp = 90rad/s, ts = 1/256 s, N = 4096 and
wsz = 90 rads, ts = 1/256 s, N = 4096 and a = [0.5, 5] for “Lorentz3Pk1d" wavelet.

a = [0.5, 5] for “Lorentz3Pk1d" wavelet.
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The Numerical Analysis:

NUMERICAL ANALYSIS FOR SIGNALS WITH NOISE

Using Lorentzian Models
Using Metabolite-based wavelets

e Here the goal was to find the limit of signal detection in presence
of noise by means of autocorrelation wavelets ;
@ White gaussian noise was added to signals at different SNR levels;

@ The CWT was performed (N peak was analyzed by its related N
autocorrelation wavelet;

© The results are in the limit of signal detection by its wavelet (still
have the horizontal ridge);

© The SNR of this limit were in average ~ —20dB
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The Numerical Analysis:

SOME NOISE RESULTS

Using Lorentzian Models
Using Metabolite-based wavelets

owrin
Wavell: Lorntz1p (20,125, D=0.0039063)

owTin
Wavelet: Lorentz2p1d ( ;1=0.125, D10, 0030063, k220,25, D2-0,003063)

Adalberto Schuck Jr.
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paroquction Using Lorentzian Models
The Analytical Analysis ng :
. . Using Metabolite-based wavelets
The Numerical Analysis:

CREATING AND USING METABOLITE-BASED WAVELETS

@ Numerical analysis with Metabolite-based wavelets:
Take signals from one in vitro metabolite database;
Create its related Autocorrelation Wavelets;
Analyze a mixture of metabolites by one related autocorrelation wavelet with Matlab;

Metabolite profile (Cre)

The Algorithm: 20

@ Calculate autocorrelation function R s
of metabolite profile ¢: &

+N
Rln = Y ¢lkldln—k (21)

Py D5 0 05

using Matlab function xcorr; ‘

@ Subtract its mean value:

¢[n] = R[n] — E{R[n]}  (22)

0 100 200 300 400 500 600
t[ms]
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WAVELET CONSTRUCTION RESULT

Using Lorentzian Models
Using Metabolite-based wavelets

Metabolite profile (Cre) Cre-based wavelet
Cre x10° Cre
300 10
250 8
200
— 6
=]
& 150
& 4
100
2
50
0 0
05 0 -0.5 05 0 -0.5
f[kHz] f[kHz)
600
.
400
gw 2 éﬁ 200
g o & 0
-200
-2
-400
740 100 200 300 400 500 600 -500 0 500
t[ms] t[ms]
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The Numerical Analysis:

HOw TO DILATE DISCRETE WAVELETS?

Using Lorentzian Models
Using Metabolite-based wavelets

o PROBLEM: Mother wavelet is Discrete , no analytical expression;

e SOLUTION: An discrete upsampler/downsampler system was
used.

[Hiw)| IRl

x[n] - L R[nlEx AL
7 wirad] wirad]

Fig. Block diagram of Upsampler/downsampler system. L, M € (Z).

e Wavelet will be expanded by an integer factor of L and contracted
by an factor of M.

o a=L/M.

A
4

=
=l
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The Numerical Analysis:

EXAMPLE OF DILATED WAVELET

Using Lorentzian Models
Using Metabolite-based wavelets

Cre-based wavelet (real part) at different scales:

scale a=0.8 scale a=1.2
15 15

t[ms] t[ms]

Fig. scale a= 0.8 Fig. scalea=1.2
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Using Lorentzian Models
Using Metabolite-based wavelets

SIGNAL 1: COMBINATION NAA + CRE WITHOUT LAC

Sum of pure Naa and Cre signals, no noise:

x10" Naa x10" cre x107

10 10| 10]

8 8 8
% S g

05 o -05 05 [ -05 05 ) -05

f[kHz] f[kHz] flkHz)
Fig. Naa part Fig. Cre part Fig. Naa + Cre
=] F = = z
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SIGNAL 2: COMBINATION NAA + CRE + LAC

Using Lorentzian Models
Using Metabolite-based wavelets

Sum of pure Naa and Cre signals PLUS Lac, no noise:

g . Lac .
12210 x10 110
10 10 10|
8| 8| 8
S5 g =
S ¢l £ & ol
a o @
4 4 4
2 2| H
05 o 05 05 [ 05 05 0 -05
1[kHz) flkHz) flkHz]

Fig. Naa + Cre Fig. Lac part Fig. Naa + Cre + Lac
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CWT ANALYSIS OF SIGNAL 1 WITH NAA-BASED
WAVELET

Using Lorentzian Models
Using Metabolite-based wavelets

CWT Naa: Max= 175.2 at scale=0.99 and 1=47ms CWT Naa: Max= 74350516.0 at scale=1 and 1=27ms

0.8 0.8
@ o
Q Q
© 1 < 1
S S
@ @
1.2 1.2
0 100 200 300 400 500 0 100 200 300 400 500
T[ms] T [ms]
horizontal ridges, thresh=0.4 horizontal ridges, thresh=0.4
0.8 0.8
o o
(] [}
< 1 T 1
S S
@ @
12 12
0 100 200 300 400 500 0 100 200 300 400 500
T[ms] T[ms]

Fig. Naa-wavelet CWT of Naa
reference signal

Adalberto Schuck Jr.

Fig. Naa-wavelet CWT of
Naa+Cre composed signal

Analysis of MRS Signals with Autocorr. Wavelets 29/37



Introduction
The Analytical Analysis
The Numerical Analysis:

Using Lorentzian Models
Using Metabolite-based wavelets

CWT ANALYSIS OF SIGNAL 2 WITH NAA-BASED

WAVELET

CWT Naa: Max= 175.2 at scale=0.99 and 1=47ms

0.8
@
Q
© 1
S
@
1.2
0 100 200 300 400 500
T[ms]
horizontal ridges, thresh=0.4
0.8
o
(]
< 1
S
@
12
0 100 200 300 400 500

T[ms]

Fig. Naa-wavelet CWT of Naa
reference signal

Adalberto Schuck Jr.

CWT Naa: Max= 73682883.5 at scale=1 and 1=27ms

0.8
o
Q
< 1
S
@
1.2
0 100 200 300 400 500
T[ms]
horizontal ridges, thresh=0.4
0.8
o
[}
T 1
S
@
12
0 100 200 300 400 500

T[ms]

Fig. Naa-wavelet CWT of
Naa+Cre+Lac composed signal
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The Numerical Analysis:

CWT ANALYSIS OF SIGNAL 1 WITH CRE-BASED
WAVELET

Using Lorentzian Models
Using Metabolite-based wavelets

CWT Cre: Max= 163.4 at scale=0.98 and 1=52ms CWT Cre: Max= 47982814.1 at scale=1 and 1=16ms
0.8 0.8
3 3
5 1%‘"‘" 51 TLEE
@ @
1.2 1.2
0 100 200 300 400 500 0 100 200 300 400 500
T[ms] T [ms]
horizontal ridges, thresh=0.4 horizontal ridges, thresh=0.4
0.8 0.8
g | g |-
L P L —na
S S S A
@ @

12 12
0 100 200 300 400 500 0 100 200 300 400 500
T[ms] T[ms]

Fig. Cre-wavelet CWT of Cre Fig. Cre-wavelet CWT of Naa+Cre
reference signal composed signal
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CWT ANALYSIS OF SIGNAL 2 WITH CRE-BASED
WAVELET

Using Lorentzian Models
Using Metabolite-based wavelets

CWT Cre: Max= 163.4 at scale=0.98 and 1=52ms CWT Cre: Max= 49077379.1 at scale=1 and 1=16ms
0.8 0.8
3 3
5 1%"“"" 5 1 L LLEE
@ @
1.2 1.2
0 100 200 300 400 500 0 100 200 300 400 500
T[ms] T[ms]
horizontal ridges, thresh=0.4 horizontal ridges, thresh=0.4
0.8 0.8
g | g |-
L P [ .
S S ol
@ @

12 12
0 100 200 300 400 500 0 100 200 300 400 500
T[ms] T[ms]

Fig. Cre-wavelet CWT of Cre Fig. Cre-wavelet CWT of
reference signal Naa+Cre+Lac composed signal
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The Numerical Analysis:

CWT ANALYSIS OF SIGNAL 1 WITH LAC-BASED
WAVELET

Using Lorentzian Models
Using Metabolite-based wavelets

CWT Lac: Max= 64.7 at scale=0.99 and 1=105ms CWT Lac: Max= 39138432.0 at scale=1.2 and 1=6ms
0.8 0.8
7 @
4 — 4
< 1 — < 1
? — &
1.2 1.2
0 100 200 300 400 500 0 100 200 300 400 500
T[ms] T [ms]
horizontal ridges, thresh=0.4 horizontal ridges, thresh=0.4
0.8 0.8
7 @
L e — L
g = g 1
@ &
12 . . . . . 1.2
0 100 200 300 400 500 0 100 200 300 400 500
T [ms] T [ms]
Fig. Lac-wavelet CWT of Lac Fig. Lac-wavelet CWT of Naa+Cre
reference signal composed signal
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The Numerical Analysis:

CWT ANALYSIS OF SIGNAL 2 WITH LAC-BASED
WAVELET

Using Lorentzian Models
Using Metabolite-based wavelets

CWT Lac: Max= 64.7 at scale=0.99 and 1=105ms CWT Lac: Max= 35359511.1 at scale=1.2 and 1=13ms
0.8 0.8
4 — 4
g 1 —_— g 1 —
1.2 1.2
0 100 200 300 400 500 0 100 200 300 400 500
T[ms] T [ms]
horizontal ridges, thresh=0.4 horizontal ridges, thresh=0.4
0.8 08
e g e
T = ® T T
12 L - - _ _ 12
0 100 200 300 400 500 0 100 200 300 400 500
T [ms] T [ms]
Fig. Lac-wavelet CWT of Lac Fig. Lac-wavelet CWT of
reference signal Naa+Cre+Lac composed signal
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The Analytical Analysis
The Numerical Analysis:

THE CONCLUSIONS SO FAR

Using Lorentzian Models
Using Metabolite-based wavelets

@ Analytical analysis:

@ Analytical expressions for Wavelet function and CWT, using Lorentzian
models were made;

© Horizontal ridges at a = 1 means Presence of Metabolite which generated
the autocorr.wavelet;

@ For 1 peak, the Damping factor can be found. For more than one peak, the
Damping factors can be approximated from horizontal ridges at a # 1;

@ Numerical analysis with Lorentzian signals:

@ Discretization and time limitation of signals changed a little the results
(“lateral" Ridges are not smooth);

© With multi-peaked signal/autocorr. wavelet, the damping estimation is
harder;

© Single signals could be detected at ~ —20dB SNR,;

@ Numerical analysis with metabolite-based signals:
@ Algorithms for autocorrelation wavelet creation, dilation and CWT were
made;
© The metabolites presence could be detected in the mixture by its related
wavelet;
© Parameters estimation is almost done (so wait a little bit more).
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